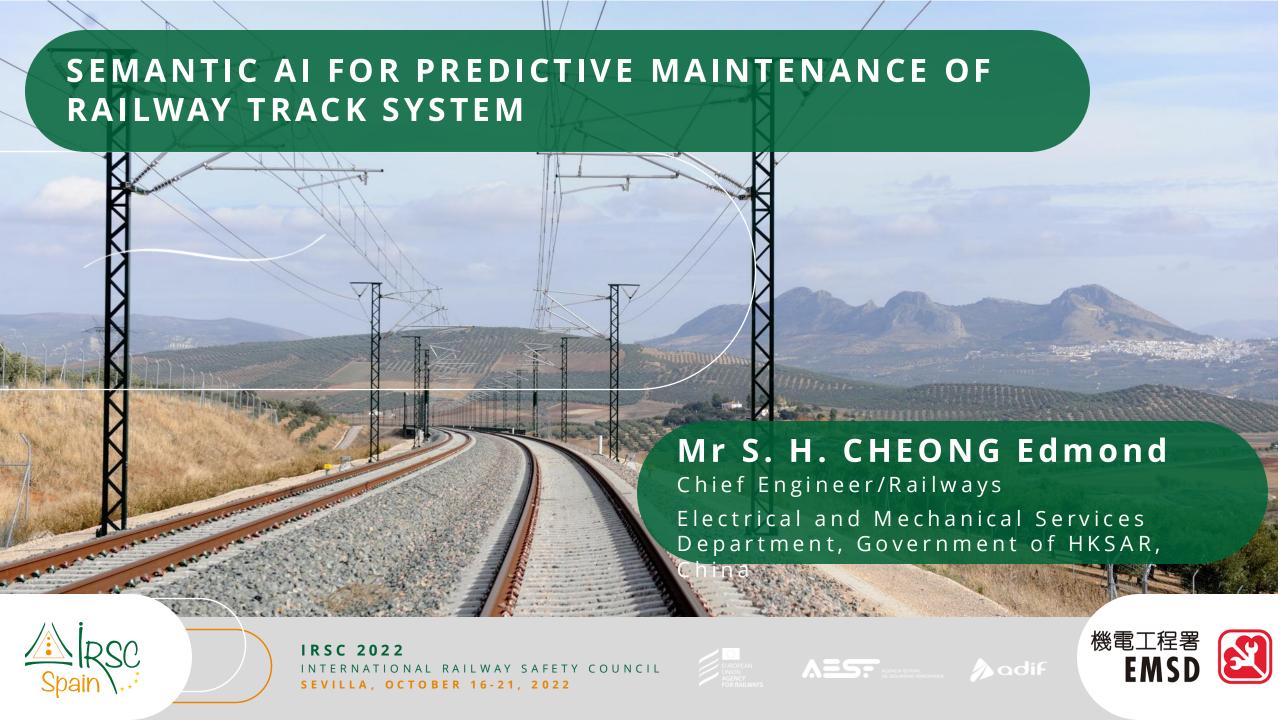
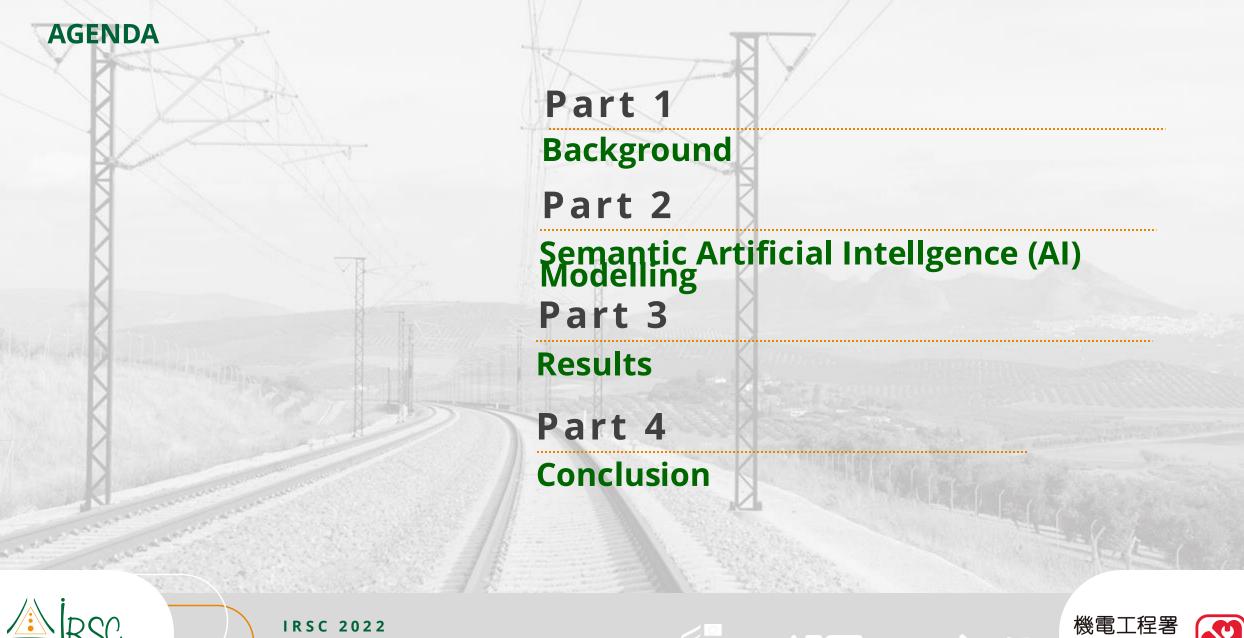


IRSC 2022

INTERNATIONAL RAILWAY SAFETY COUNCIL

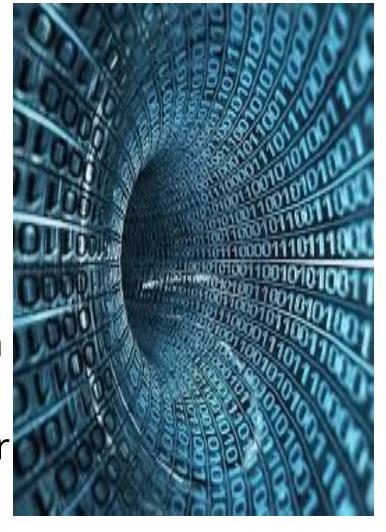

SEVILLA, OCTOBER 16-21, 2022



Background

Railway Network of Hong Kong, China

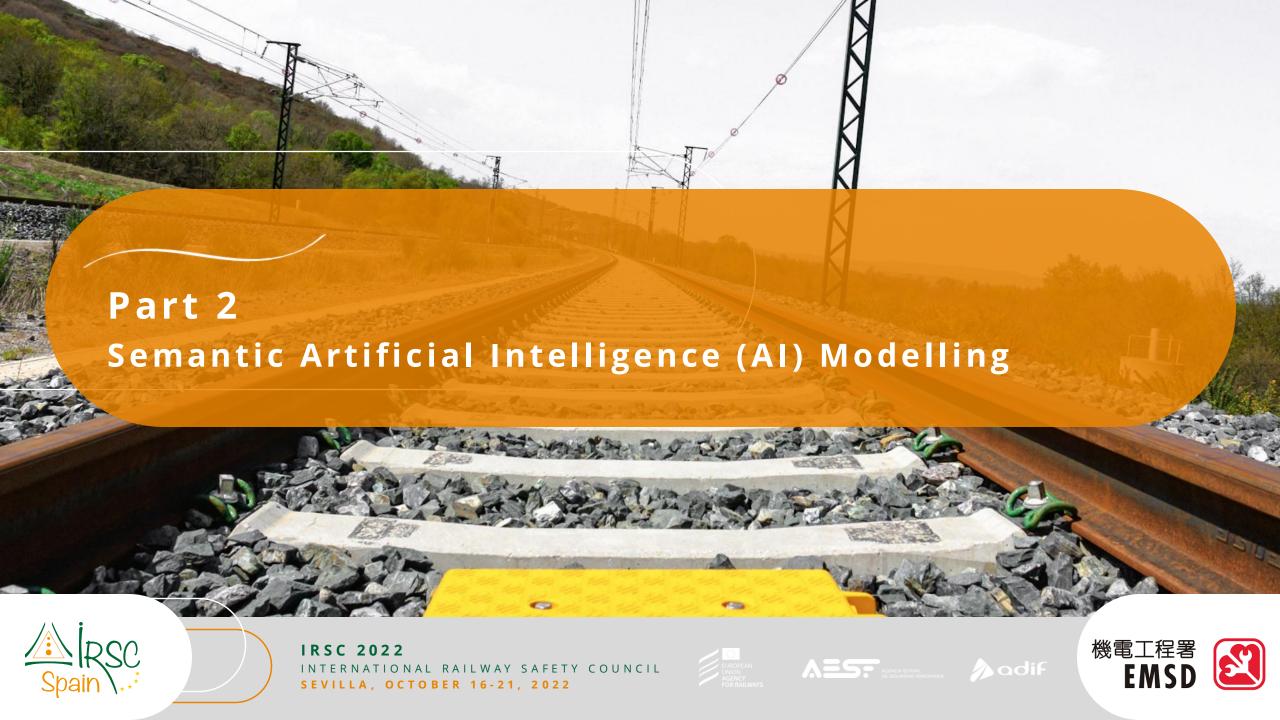
- Over 5 million passenger journeys are made each day
- Very long daily service hours
- Extremely short maintenance window
- Numerous railway assets required maintenance
- Need an effective way to minimize breakdown maintenance and incidents



Background

Data-driven Era

- ➤ Wide range of data available
 - Static data
 - Dynamic data
 - Online data
- ➤ Extraction of knowledge/ information from data
- Develop Artificial Intelligence (AI) model for decision making / prediction



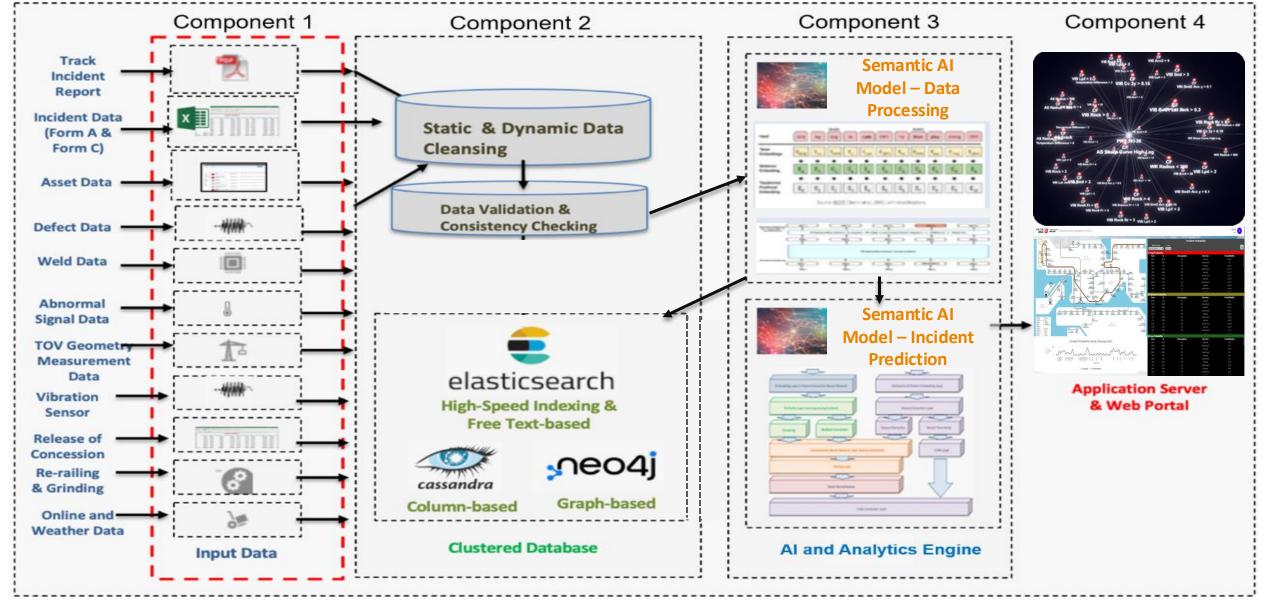
Challenges

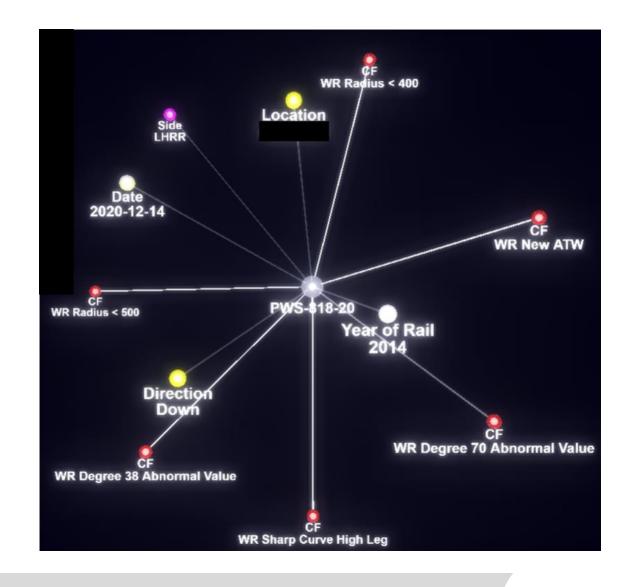
- Massive / Missing data
- Data in different types and formats
- Missing of correlation among data
- Resources and time consuming for data standardization and cleansing
- Expert knowledge required to transform data into structured knowledge/information

Novel Approach on AI Modelling

- > Standardization Railway Schema
- Adopt Semantic Al Technology
 - Transform raw data into structured data
 - Find out correlation, contribution factors and ranking of incident
- Develop AI Predictive Maintenance Model based on incident prediction probability
- ➤ Pilot trial application on Permanent Way (Pway)
 System in Hong Kong railway network

Silver medal award wining project
Invention of Geneva 2022





System Hierarchy

Output

- Knowledge Graph
 - Visually Display
 - Relationship between Contributing Factors and incident
 - Strength of Edges

Output

- Probability of incident along Pway chainage
- Ranked
 - High Risk
 - Medium Risk
 - Low Risk

Table V Score Table		Incide	nt Probability	_4
■ High Prol	bability			
From	То	Chainage(km)	Direction	Probability(%)
Lo cation A1	Location B1	1	Uptrack	64.54
Location A2	Location B2	2	Uptrack	81.00
Location A3	Location B3	3	Uptrack	72.99
Location A4	Location B4	4	Uptrack	85.45
Location A5	Location B5	5	Uptrack	81.46
Location A6	Location B6	6	Uptrack	50.56
Location A7	Location B7	7	Uptrack	73.71
Location A8	Location B8	8	Uptrack	86.67
Location A9	Location B9	9	Uptrack	95.03
Location A10	Location B10	10	Uptrack	84.90
Medium	Probability			
From	То	Chainage(km)	Direction	Probability(%)
Location A11	Location B11	11	Uptrack	19.35
Location A12	Location B12	12	Uptrack	42.13
Location A13	Location B13	13	Uptrack	39.49
Location A14	Location B14	14	Uptrack	36.14
Location A15	Location B15	15	Uptrack	39.50
Location A16	Location B16	16	Uptrack	36.01
Location A17	Location B17	17	Uptrack	24.37
Location A18	Location B18	18	Uptrack	21.19
Location A19	Location B19	19	Uptrack	30.24
Location A20	Location B20	20	Uptrack	25.82
Low Prob	ability			
From	То	Chainage(km)	Direction	Probability(%)
Location A21	Location B11	21	Uptrack	7.51
Location A22	Location B12	22	Uptrack	7.09
Location A23	Location B13	23	Uptrack	10.30
Location A14	Location B14	24	Uptrack	2.03
Location A15	Location B15	25	Uptrack	10.81
Location A16	Location B16	26	Uptrack	4.97
Location A17	Location B17	27	Uptrack	5.43
Location A18	Location B18	28	Uptrack	9.21
Location A19	Location B19	29	Uptrack	7.18
Location A20	Location B20	30	Uptrack	10.20

INTERNATIONAL RAILWAY SAFETY COUNCIL SEVILLA, OCTOBER 16-21, 2022

Results

Incident Probability Prediction

- ✓ Accuracy Test (Round 1)
 - > Training data: Jan 2016 Aug 2021 (68 Months, Line 1 data)
 - > Testing data: Sep 2021 Apr 2022 (8 Months, Line 1 data)
 - > Accuracy is 67% with Probability Threshold at 0.7

Probability Threshold	Correct Predictions	Accuracy (True Positive & True Negative)	False Positives	False Negatives
0.1	59	51%	35%	8%
0.2	68	59%	26%	9%
0.3	74	64%	19%	11%
0.4	77	66%	15%	13%
0.5	76	66%	14%	15%
0.6	78	67%	10%	16%
0.7	78	67%	8%	19%
0.8	73	63%	6%	25%
0.9	74	64%	2%	28%

Results

Incident Probability Prediction

- ✓ Accuracy Test (Round 2)
 - > Training data: Jan 2016 Dec 2021 (68 + 4 Months, Line 1 data)
 - > Testing data: Jan 2022 Jun 2022 (6 Months, Line 1 data)
 - > Accuracy is 72% with Probability Threshold at 0.7

_	False Negatives	False Positives	Accuracy (True Positive & True Negative)	Correct Predictions	Probability Threshold
_	4%	36%	59%	69	0.1
	10%	27%	63%	73	0.2
	14%	20%	66%	77	0.3
ccuracy increased by 5%	14% A (15%	72%	83	0.4
alse Positives improved by 4%	19% F a	9%	72%	83	0.5
	22%	6%	72%	83	0.6
	24%	4%	72%	83	0.7
	24%	3%	73%	85	0.8
_	25%	0%	75%	87	0.9

Results

Incident Probability Prediction

- ✓ Accuracy Test (Round 3)
 - > Training data: Jan 2016 Dec 2021 (68 + 4 Months, Line 1 data)
 - > Testing data: Jan 2022 Apr 2022 (4 Months, Line 2 data)
 - > Accuracy is 56% with Probability Threshold at 0.7

Probability Threshold	Correct Predictions	Accuracy (True Positive & True Negative)	False Positives	False Negatives
0.1	39	63%	32%	5%
0.2	39	63%	32%	5%
0.3	51	82%	13%	5%
0.4	51	82%	13%	5%
0.5	45	73%	8%	19%
0.6	35	72%	3%	40%
0.7	34	56%	0%	45%
0.8	33	55%	0%	47%
0.9	32	52%	0%	48%

Conclusion

Semantic Al Model

- Schema standardization allows integration of wide range data into a clustered database more easily
- > Semantic technology (Q&A module) enables recovery and visualization of structured knowledge/information from data more efficiently
- > Identified contributing factors and not easily noticeable indicators (Pway incidents in this case)
- Incident prediction accuracy improves with more data are used to train up the Al model
- Ranking of incident probability empower maintainer with predictive early warnings, historical case matching, and actionable intelligence (predictive maintenance)
- Application in other railway systems is feasible

Acknowledgement

Organizations participated in this pilot trial

Mass Transit Railway Corporation Limited Infrastructure Maintenance

City University of Hong Kong School of Data Science

Thank You!

www.irsc2022.com

