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Background

Railway Network of Hong Kong, China
• Over 5 million passenger journeys are 

made each day
• Very long daily service hours
• Extremely short maintenance window
• Numerous railway assets required 

maintenance
• Need an effective way to minimize 

breakdown maintenance and incidents
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Background

Data-driven Era
Wide range of data available

• Static data
• Dynamic data
• Online data

 Extraction of knowledge/ information from 
data

 Develop Artificial Intelligence (AI) model for 
decision making / prediction
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Semantic AI Modelling

Challenges
• Massive / Missing data
• Data in different types and formats
• Missing of correlation among data
• Resources and time consuming for data 

standardization and cleansing
• Expert knowledge required to transform 

data into structured 
knowledge/information
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Semantic AI Modelling

Novel Approach on AI Modelling
 Standardization – Railway Schema
 Adopt Semantic AI Technology

• Transform raw data into structured data
• Find out correlation, contribution factors and 

ranking of incident
 Develop AI Predictive Maintenance Model –

based on incident prediction probability
 Pilot trial application on Permanent Way (Pway) 

System in Hong Kong railway network
Silver medal award wining 

project
Invention of Geneva 2022
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Semantic AI Modelling
System Hierarchy 

Semantic AI
Model – Data 

Processing

Semantic AI
Model – Incident 

Prediction
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Semantic AI Modelling

Output
 Knowledge Graph

• Visually Display
• Relationship between 

Contributing Factors and 
incident

• Strength of Edges
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Semantic AI Modelling

Output
 Probability of 

incident along 
Pway chainage

 Ranked
• High Risk
• Medium Risk
• Low Risk
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Results
Incident Probability Prediction
 Accuracy Test (Round 1)
 Training data: Jan 2016 – Aug 2021 (68 Months, Line 1 data)
 Testing data: Sep 2021 – Apr 2022 (8 Months, Line 1 data)
 Accuracy is 67% with Probability Threshold at 0.7
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Results
Incident Probability Prediction
 Accuracy Test (Round 2)
 Training data: Jan 2016 – Dec 2021 (68 + 4 Months, Line 1 data)
 Testing data: Jan 2022 – Jun 2022 (6 Months, Line 1 data)
 Accuracy is 72% with Probability Threshold at 0.7

Accuracy increased by 5%
False Positives improved by 4% 
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Results
Incident Probability Prediction
 Accuracy Test (Round 3)
 Training data: Jan 2016 – Dec 2021 (68 + 4 Months, Line 1 data)
 Testing data: Jan 2022 – Apr 2022 (4 Months, Line 2 data)
 Accuracy is 56% with Probability Threshold at 0.7
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Conclusion
Semantic AI Model
 Schema standardization allows integration of wide range data into a clustered 

database more easily
 Semantic technology (Q&A module) enables recovery and visualization of 

structured knowledge/ information from data more efficiently
 Identified contributing factors and not easily noticeable indicators (Pway incidents 

in this case)
 Incident prediction accuracy improves with more data are used to train up the AI 

model
 Ranking of incident probability empower maintainer with predictive early warnings, 

historical case matching, and actionable intelligence (predictive maintenance)
 Application in other railway systems is feasible
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