

Mission & Roles

Mission

Develop the Korean Railway Industry through R&D on Railway Technology, Operation, Policy, and Applications

Roles

- R&D on Core Technology, Policy, Safety & Logistics
 - Development & Application of HSR, LRT, TTX
 - Rail Network Expansion & Continental Connections
- System Standardization, Assessment & Certification

Workforce & Budget

INDEX

- >> 1. Project Overview
- 2. Real-time Railway Safety Monitoring & Control System
- 3. Big Data-based Risk Prediction
- >>> 4. Real-Time Risk Monitoring System
- >>> 5. Future Plan

Research Background (Recent Accidents)

22 Apr 2016 15:51 / Train derailment accident 200m ahead of Yulchon Station (1 Killed, 8 Injured)

- ✓ Vice engineer driver : 'I thought that I supposed to change the track at Deokyang Station.'
- ✓ Controller: 'I sent a radio to change the track at Yulchon Station'
- * During up-line drive because of track maintenance of down-line

13 Sep 2016 0:50 / Near Gimcheon-Gumi Station Casualty accident during track maintenance (Hit by KTX, 2 Killed, 2 Injured)

- Worker: 'Work schedule was approved'
- ✓ Supervisor : 'Didn't request a work'
- * Train delays due to earthquakes

2 May 2014 15:32 /Train Collision at Sangwangsimni Station (388 Injured (serious injury : 38 people))

✓ Incorrect signal by fault of interlock device (stop → drive)

Requirement of Monitoring and Control about Risk of Real-time Situation

Support of automated decision making

Needs from analysis of current status and problems

(1) Requirements of real-time integrated railway monitoring and control system

- Although a lot of information is generated through the safety sensors and facilities in the railway field, it is not utilized properly to manage safety operation and accidents.
- It is necessary for the engineer drivers and controllers who play a major role related to safety to receive the situation of the railway field in real time.
- Also, it is necessary to improve system to detecting accident risk and responding appropriately for railway safety.

(2) Problems of existing railway safety management

- Ensure safety through safety assessment when designing and constructing system (vehicle, signal, facility)
- In operation phase, risk-based safety management is operated based data from design and construction, but it is not managed in real time.

(3) Problems of existing "operation control" system

- In the existing "Operation control", some key information is collected in real-time to mange operation. However, these data are fragmented rather than integrated.
- It is not available to detects accident risk by collecting/analyzing safety information and, can not preemptively prevent accidents using safety information.

Settlement of As-Is & To-Be

- Current status of safety monitoring system in Korea
 - Data gathered from the sensors at the railway site is not utilized properly
 - Need to develop real time system for traffic controllers to evaluate risks
 - Current system is not real time and is components bases

Research Target

For World-best Railway Safety and International Competitiveness
Real-time Integrated Railway Safety Monitoring and Control System

- Development of ICT-based Railway Safety M&C Platform for Smart Railway Safety Management
- Development of Accident Risk Prediction Technology for World-best Railway Safety and International Competitiveness
- Development of Railway Safety Decision Support System for Reducing Railway Accident and Maintenance Costs

Railway Safety Goals of Korean Government

- ✓ Large railway accident : "Zero"ization
- ✓ 20% reduction in deaths per 100 million km compared to last year ('10(42)~'19(34))
- **✓** 3% reduction in train accidents per 100 million km compared to last year ('10(10.9)~'19(8.4))
- ✓ 3% reduction in deaths per 1 billion passengers / km compared to last year ('10(0.22)~'19(0.16))

Organization of R&D project

Schedule of R&D

Yearly Plan of Research Development

Total Period : Aug 2014~Sep 2019

Real-time Railway Safety M&C System

- Achievements: Safety M&C Platform, Interface device, Accident Prevention & Control System
- (1)Basic Design => (2)Detail Design => (3)Prototype Implementation => (4)Test and Testbed Installation => (5)Operation and Verification

Real-time Railway Safety Decision Support System

- Achievements: Real-time Risk Monitoring System, Big Data Integration Platform
- (1)Basic Design => (2)Detail Design => (3)Prototype Implementation => (4)Test and Testbed Installation => (5)Operation and Verification

Advanced Development of Safety Detection Device

- Achievements: Train Status Monitoring Device, Train Approach Indicate, Optical Intrusion Detector... (Total 6 Devices)
- (2)Device Design => (3)Device Prototype => (4) Test and Testbed Installation => (5)Operation and Verification

Testbed Installation & Verification of Real-time M&C System

- Achievements: Construction and installation on testbed and operation & verification of system
- (3)Design plan of testbed => (4) Construction and installation on testbed => (5)Testbed operation and verification

Scope of Research Development

[Sub-proejct#1] Real-time Railway Safety Monitoring and Control System

Real-time Railway Safety M&C Platform

- Effective safety information sharing system
- Safety index-based real-time accident risk monitoring
- · GIS-based console for safety monitoring

- Collect real-time integrated railway safety data from devices
- Responding to immediate risks and providing integrated safety data to users

Interface Device

- Data collection from devices
- Protocol&Data conversion
- DDS Data transmission

[Sub-proejct#2] Real-time Integrated Railway Safety Decision Support System

Real-time Risk Monitoring System

- Alert of predicted accident risk
- Evaluation of railway risk

Big Data Integration Platform

- Big data analysis
- Big data-based prediction of railway accident risk

 Support decision making for railway safety by providing risk prediction information

Off

위점에 등에 글프 각종 사고정보

Deliver Real-time Safety Data

Provide Real-time

Safety Data

Provide info. of decision support

기존 안전검지장치 및 현장 운영데이

* [Sub-project #4] install and verification of achievements of other sub-projects on testbed

[Sub-proejct#3] Advanced Development of Safety Detection Device

- Performance improvement and advanced development of railway safety detection device
- Provide railway safety data from device

Example Scenarios for safety monitorinng and control

Real-time Integrated Railway Safety Monitoring and Control System

Monitoring and control system to enhance safety for train operation

Research Goal and Scope

1st Year
Basic Design

2nd Year Detailed Design 3rd Year Implementation 4th Year
Testbed Installation

5th Year Testbed Verification and Supplement

Major Achievements

Real-time Railway Safety Monitoring and Control Platform

Real-time Railway Safety M&C Platform

- Development of GIS-based Integrated M&C Module for Safety Facilities
 - 3 Monitors for Safety Monitoring : center monitor displays GIS-based information for effective safety monitoring
 - Each screen is implemented as a module for system scalability
 - Implementation of Total 23 Screens for Safety Monitoring:
 Train Monitoring Screen(4), Signal and Station Monitoring
 Screen (3), SCADA Monitoring Screen (3), Facility Monitoring
 Screen (4), Safety Facility Monitoring Screen (9)

<GIS-based Console Screen Layout>

Research Goal and Scope

Big Data Integrated Platform

Major Achievements

Scope and Configuration

Real-Time Risk Monitoring System

Features

- ☐ Monitors hazard(s) of railway system that occur during the operation
- ☐ Evaluates the current risk of the train system given the hazard(s), based on pre-defined FT/ET models
- ☐ Locates and displays the position of failure(s) along with the movement of rolling stock in operation
- ☐ Helps the operator to perform the preventive action to deal with the failures

Fault location and Risk display

Risk evaluation using FT/ET

Technical Advantages

Existing operation control(AS-IS)

- Non-real-time data collection
- Fragmentation of information
- Limited information sharing system

Real-time Integrated Railway Safety Monitoring & Control System (TO-BE)

- Real-time data collection
- Integrated analysis of information
- Effective information sharing system

How to Use & Expand it

Construction of testbed

(Sub-project #4, from 2016)

Extended application

Easy extension to other railway routs

- Only additional detection device, interface device, network equipment is required for extension
- * Platform and additional facilities are already installed

System operation and commercialization

- (Operation) Automated system that can be operated by minimum number of operators by integration with existing operation system
- (Commercialization)
 - Installation cost of existing operation control(CTC): 3 million USD per line
 - Installation cost detection device : 0.7 million USD per km (seems to be cost-effective) (Partial Commercialization) Available of partial commercialization by customizing of each device and system

How to Use & Expand it

How to Use & Expand it

Existing systems

• SENSING : X

• COMM : OPTICAL

• Analysis, Prediction & Control: CONTROL

• IoT/Cloud : X

Features of this R&D

• SENSING : O (Limited)

• COMM: Wired/wireless, Middleware

• Analysis, Prediction & Control: Big data Analysis(Machine Learning)

• IoT/Cloud : IoT

Further applications (~2030)

• SENSING : Intelligent, Non-powered

• COMM: Wired/wireless, Middleware

• Analysis, Prediction & Control : Deep Learning

• IoT/Cloud : IoT, Cloud

Further applications (2030~)

• SENSING: Nano, Robot, Drone

• COMM: Wireless, Middleware (Tiny-DDS)

· Analysis, Prediction & Control: Fully unattended monitoring control, Al

IoT/Cloud : IoT, FoG

