Risk analysis methodology prioritization of safety investments

METHOD, ACCIDENTOLOGY \& STATEMENTS USE CASE ON CROSSING LEVEL

FIRST STEP : METHOD

CR1: risks with a low level of liability from the railway undertaking are weighted by a factor of $\mathrm{Y}=\mathbf{0 , 2}$
CR2: safety at work (and road drivers safety) are equally weighted: $Y=1$ (SNCF choice)
CR3: risks of rail transport passenger is also weighted $Y=1$
CR4: risks of "uninvolved" third parties are weighted by a factor of $\mathrm{Y}=5$

AVERSION TO RISK

\& Accidents with very large damage are perceived more strongly than several small accidents, although resulting the same number of victims : 1 accident $\times 10$ victims $\neq 10$ accidents $\times 1$ victim
\mathcal{S} It is therefore justified to give more "weight" to these accidents. Risk aversion is characterized by a stronger weighting of serious consequences as these accidents are less well accepted.
\&Operational application use an aversion factor $Z: Z=\sqrt{c}, c$ being the number of victims.
Example: $c=5$ Victims, Aversion factor $\varphi=2.23$,
Risk-averse weighted consequences $=11.2$ weighted victims

Characterization of accidents (according to "EBP" method):

- Equivalent victims (EV) =

Nbr killed +0.1 serious injured +0.01 lightly injured

- Catégories of victims:
factor Y (0.2 for suicides, 1 for others victims)
- Risk aversion weighting: $Z=\sqrt{ } V E($ for $V E>1)$
\&-Weighted Victims : WV = VE * Y* Z

OBJECTIVES OF THE "USE CASE » ON LEVEL CROSSINGS

THE STUDY WAS LED ON 2060 ACCIDENTS WITHIN 11 YEARS, CONCERNING 12500 PUBLIC LC (PASSIVE AND ACTIVE) OF THE FRENCH NETWORK

THREE STEPS

1. Define a method to enlarge the notion of victim (Weighted Victims WV)
2. Analyze the characteristics of these accidents
3.Propose a cost-effective method and argumentation for the implementation of risk control measures on level crossings (LC)

- Sources:

SNCF Réseau ISCHIA base (accidents) 2007-2018, SNCF Réseau descriptive base of infrastructure ARMEN (LC Park)

SECOND PART : ACCIDENTOLOGY \& STATEMENTS

PASSIVE LC

4 BARRIERS LC

2 BARRIERS LC

ACCIDENTOLOGY \& STATEMENTS

$\$<3$ types of accidents on LC:
Clashes against people, 9% of accidents, 0,75 killed/accident
Collisions against vehicles, 52% of accidents, 0,2 killed/accident
Suicides, 39% of accidents, 0,9 killed/accident
\& Collision accidents are spread as:
40% inattention of the car driver, lack of visibility, surprise
40% non compliance of the road traffic signage: forcing, zig zaging passage ...
20% vehicule blocked on the LC: vehicule that stalls, which blocks behind a raw ...
z<Statistical repartition of accidents (without suicides)

LC type	1 acc. every	WV aver./acc.	WV/LC/y
Passive LC	188 ys	0,28	$1,5 . \mathrm{E}-03$
2 barriers LC	109 ys	0,33	$3,0 . \mathrm{E}-03$
2 barriers LC with traffic island separator	43 ys	0,32	$7,6 . \mathrm{E}-03$
4 barriers LC	40 ys	0,32	$8,0 . \mathrm{E}-03$

IMPACT OF MOMENTUM

\&<Accidentology increases with the "momentum" of the LC
(momentum = rail traffic X road traffic / day)
$\delta<23 \%$ of highest momentum LC are causing 68% of victims.
\&<Global accidentology (Aver. Nbr WV/LC/year) is spread as:

WITHOUT SUICIDES	MOMENTUM RANGES					
	1-100	101-1 000	$\begin{aligned} & 1001- \\ & 5000 \end{aligned}$	$\begin{aligned} & 5001- \\ & 25000 \end{aligned}$	$\begin{aligned} & 25001- \\ & 125000 \end{aligned}$	> 125000
2 BARRIERS LC	4,32E-05	4,77E-04	1,08E-03	2,15E-03	8,19E-03	1,32E-02
2 BARRIERS LC WHIT ISLAND SEPARATOR	---	0	0	2,67E-05	3,67E-03	1,39E-02
4 BARRIERS LC	---	0	6,49E-05	6,25E-04	5,75E-03	1,11E-02
PASSIVE LC	1,43E-03	2,21E-03	4,09E-03	0	---	---
AVERAGE	9,60E-04	7,48E-04	1,11E-03	2,09E-03	7,71E-03	1,25E-02

For the highest momentum, for one LC, they may be one Weighted Victim every 70 years

THIRD PART : EVALUATION OF MEASURES

IDENTIFIED MEASURES

8<Passive LC:
Simple deletion of LC (ie without bridge)
Transformation to active LC
\& $\angle A C T I V E$ LC:
Deletion of 2-barrier LC
Transformation 2 to 4-barrier LC
Equipment with OD (obstacle detection)
Equipment with crossing radar
4-barrier stickers ("BRAKABLE BARRIER")
Flashing red lamps with LED's + on-ground signaling LED lighting barriers
Video-protection with prosecution or not
Traffic separator Island (2-barrier)

ILLUSTRATIONS

FLASHING LED LIGHT

SNCF

CALCULATION METHOD

$\$<$ Coasts : equivalent annual costs (per LC)

- initial cost of allocated investment based on duration of use and inflationrate
- Costs for operatilNG and maintenance (of the measure)
- Potential revenues provided by the measure
$8<$ Efficiency (per LC)
- Estimation of weighted victims (WV) "saved" per year, thanks to the measure perLC
z<Coast-efficiency ratio :
- Annual expense to save 1 WV per LC (per year)

SNCF
SÉCURITÉ FREDERIC HENON - IRSC 2019

PASSIVE LC RESULTS

	Cost- Efficiency (M€/WV/LC/Y)		
PASSIVE LC (momentums)	$1-100$	$101-1000$	$1001-$ 5000
NUMBER OF LC	1341	363	$\mathbf{2 6}$
SIMPLE DELETION	5,1	3,1	1,6
TRANSFORMATION INTO 2 BARRIERS LC	18	14,4	8,3

FREDERIC HENON - IRSC 2019

TWO-BARRIERS LC RESULTS

TWO BARRIERS LC (ranked with momentum)	101-1000	1001-5000	5001-25000	25001-125000	>125000
NUMBER of LC	1915	2047	2108	1516	489
NUMBER LC WITH ISLAND TRAFFIC SEPARATOR	7	7	34	77	108
DELETION (BRIDGE)	495	314	183	62,8	40,6
TRANSFORMATION INTO 4-B		47,3	31,5	19,7	22,9
OBSTACLE DETECTION	481	230	119	34,1	20,5
CROSSING RADAR	596	263	108,4	3,4	2,1
OBSTACLE DETECTION + RADAR	606	285	138	28,5	17,3
LED BARRIERS	98,6	43,6	21,9	5,7	3,6
LED SIGN LIGHTS + ON- GROUND SIGNALING	123	54,1	27,2	7,1	4,4
LED SIGN LIGHTS + GROUND SIGNALING + LED BARRIERS	117	51,7	26,0	6,8	4,2
VIDEOPROTECTION WITHOUTPROSECUTION	210	92,9	46,7	12,3	7,6
VIDEOPROTECTION WITH PROSECUTION	335	148	63,3	2,1	1,3
TRAFFIC SEPARATOR ISLANDS				7,0	

FREDERIC HENON - IRSC 2019

FOUR-BARRIERS LC RESULTS

| TWO BARRIERS LC | COST / EFFICIENCY (MENV/LC/Y) | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $1001-5000$ | $5001-25000$ | $25001-125000$ | >125000 |
| NUMBER of LC | 14 | 32 | 214 | 340 |
| STICKERS on exit barriers | 49,7 | 5,2 | 0,6 | 0,3 |
| OBSTACLE DETECTION | 4579 | 426 | 51,0 | 26,2 |
| CROSSING RADAR | 5844 | 497 | 6,5 | 3,4 |
| LED BARRIERS | 725 | 75,3 | 8,2 | 4,2 |
| LED SIGN LIGHTS WITH GROUND SIGNALING | 901 | 93,5 | 10,2 | 5,3 |
| LED LIGHTS SIGNS + GROUND SIGNALING +LED
 BARRIERS | 860 | 89,3 | 9,7 | 5,1 |
| VIDÉOPROTECTION WITHOUT PROSECUTION | 1894 | 197 | 21,4 | 11,1 |
| VIDÉOPROTECTION WITH PROSECUTION | 3043 | 269 | 3,7 | 1,9 |

SECURITÉ FREDERIC HENON - IRSC 2019

SUMMARY

$\delta<C o s t /$ efficiency is high even excessive for low-momentum's level crossings.
s<Some low-cost investments improve road drivers visibility and are cost-efficient.
$\$<$ Deletion of LC eliminates the risk, but low cost-efficiency.
8<Obstacle detectors has a low cost-efficiency (expensive and prevents 40% of collisionsonly).
$8<$ Crossing radars are expensive and have limited efficiency.
$8<$ Videoprotection is

- Affordable and efficient, especially in the case of prosecution
- Offers extensive features: fight vandalism, better knowledge on road traffic, detection ofnearaccidents and help enquiries upon an accident.

NEXT STEPS ON THE USE CASE

Evaluate cost/efficiency of road traffic equipment, to provide a global decision-making guide for risks managers

Exemple: lighting warning road sign (approximatively located 300 m ahead of the crossing)

SNCF
SÉCURITÉ
SÉCURITÉ FREDERIC HENON - IRSC 2019

NEXT STEPS FOR DECISION MAKERS

Evaluate cost/efficiency for all « means of actions for more safety »

NEXT STEPS FOR DECISION MAKERS

Example for SNCF NETWORK PROGRAM « SAFETY TO SYSTEM INVESTMENTS »

Programme	Nr	Mesure	RCE [Mio.€/vp]
P8 PN	P8.17	SAL2, Ilot séparateur "dur" / M 25001-125000	10
P4 Clôture	P4	Clóture: Gare	11
P3 STEM	P3. 3	Contrôle du Chargement et des Roues (CCR)	11
P8 PN	P8.14	SAL4, Vidéo protection / M > 125000	11
P8 PN	P8.18	SAL2, Ilot séparateur "souple" / M 25001-125000	11
P7 Quai	P7.2	Annonces cycliques: gares cat. 2/3	13
P1 Déshuntage	P1.4c	Temporisation (45*) gare moyenne	17
P8 PN	P8.9	SAL2, DO PN + Radar de franchissement / M > 125000	17
P7 Quai	P7.3	Annonces précis: gares cat. 0/1	18
P7 Qual	P7.5	Barrières quais: gares cat. 0/1	18
P8 PN	P8.4	SAL2 --> SAL4 / M \geq 25001-125000	20
P4 Clôture	P4	Clôture: Urbain	21
P7 Quai	P7.4	Clótures quais; gares cat. 2/3	21
P8 PN	P8. 5	SAL2, DO PN / M > 125000	21
P5 Sites MD	P5.5	Locaux de confinement (sites MD cat. A)	25
P8 PN	P8.6	SAL4, DO PN / M > 125000	26
P6 TVP	P6.3	Signaux lumineux	38
P7 Quai	P7.5	Barrières quais: gares cat. $2 / 3$	42
P1 Déshuntage	P1.9	Sentinelles automatiques, pédale d'assistance	42
P7 Quai	P7.3	Annonces précis: gares cat. 2/3	44
P8 PN	P8. 3	Suppression PN SAL2 / M > 125000	48
P6 TVP	P6.4	Passerelle	56
P6 TVP	P6.5	Souterrain	56
P5 Sites MD	P5.4	Système d'alerte riverains (sites MD cat. A)	58
P3 STEM	P3.2	Vidéo STEM	60
P2 KVB	P2.1	KVB - Protection des trains origines	66
P2 KVB	P2.2	KVB - Dépassement vitesse limite UIC 3-6	66
P5 Sites MD	P5. 3	Deux réservoirs d'eau (sites MD cat. A)	68

\qquad

THANK YOU FOR YOUR ATTENTION !

$\left.\begin{array}{l}\text { SNCF } \\ \text { SÉCURITÉ }\end{array}\right]$
SÉCURITÉ FREDERIC HENON - IRSC 2019

