

IRSC 2017 Hong-Kong

Introduction

- Innovation has not always been framed by safety and regulation
- In other times, risky experimentation was the only way to « proof a concept »
- Nowadays, the key point is to avoid decreasing the global current level of safety
- If there is not any reference system to be compared with, explicit analysis of risk is necessary

Introduction

- > NSA / Autorisation intervenes at the end of the development process
- NSA's aim is to assess if the level of safety won't be decreased when authorizing a new system or actor but can not check all safety studies (components level): confidence and competencies are key points
- > NSA France must work with the european regulation framework
- > There is no specific framework to deal with disruptive innovation
- ➤ → EU Commission has to be seized before deploying any innovation that is not in the field of this framework (article 10 of STI LOC&PAS)

Innovations in railway

- Disruptive innovation are not numerous in the european railway network:
 - ERTMS
 - Automatic metro and tramway
 - IoT (just beginning)
 - Hyperloop (if it's considered as railway !)
 - Virtual tests & numerical simulation

Since 2006, EPSF has not being asked to approve significative innovations

> Example: Autonomous train is a real innovation

- Another way to monitor a train (no driver, long distance monitoring)
- New operation rules to create
- Interfaces with infrastructure
- Put driver's 5 senses into a machine

Innovations in railway

- How to authorize such technologies ?
- How to validate safety demonstration that can't be based on previous experiences ?
- RAMS can not be applied systematically and easily
- In Europe, common safety method proposes explicit demonstration but is not enough because of:
 - → A lack of application clues
 - Some significantly different levels of demonstation between sub-systems in the regulation (LOC/PAS vs CCS)

TIPS & PROPOSALS

- > To have a step-by-step and pro-active approach
- To be open regarding the experiences of other fields of activities
- To allow « concept lines », that is, scale 1 laboratories on the railway network. A specific regulatory framework to be invented ?
- To reduce and adapt maintenance & monitoring time frames to feed the return of experience

What about autonomous train ?

- What about test scenarios ?
- How to assess & validate Artificial Intelligence ?
- How to deal with heterogeneity in the network ?
- Loss of competencies of drivers ?
- Impact on SMS ? (organisation, rules, training, emergency management, etc.)
- Developers & NSA need to work closely on risk identification and covering at the very early steps of the « V » cycle (which is not the classical role of NSA in EU)
- All fields are concerned: rolling stock, infrastructure, driving, operation, etc.)

What about autonomous train ?

- > SNCF has contacted EPSF at the beginning of the project
- Every 3 months, a meeting is organized with the future applicant (SNCF), research bodies, entities in charge of tests, and EPSF
- Discussion are at a very early stage:
 - \rightarrow Exemples:
 - Theoritical discussions on Al
 - First hazard analysis and debates
 - Deployment of projects and key steps & schedules
 - Identification of regulation brakes

> First tests on the network expected from end of 2018

Challenges

How to deal with the responsibility of AI ?

What about cybersecurity ?

 In France, cybersecurity aspects belong to another governmental body (contacts needed)

Human factors

- The human factor situations are completely different depending on each level of autonomy and technical solutions
- A key question is to know if technology can face « black swan » events

> Wide open railway system

- Changes drastically the risk associated with no driver
- Identification of the position of the train (not only in emergency situations): equipment of infrastructures ? GNSS ?

RoE

- Roll back in Serqueux (France, 2015)
- Shock of a passenger regional train with 2 cows
- Loss of all brakes / no train control anymore (no electrical power)
- Emergency button out of order
- The train starts to run down a slope without any brake during 19 km (12 miles) reaching 100 km/h
- The driver anticipates where and when the geographical gradient will be reversed
- He prepares himself, jumps out of the train at the very moment and puts some wedges under the wheels in front of the train in order to stop it.

OTHER INNOVATIONS

Composite bolster

- First contact in 2014
- First test expected end of 2017 on a train with passengers

Increase of numerical simulation into safety demonstrations

- NSA initiative with the stakeholders (including reseach bodies)
- Goal: to analyse how to allow safety proofs mainly based on simulation

Thank You

