Good Practice Approach to Risk and Safety Management of Major Rail System Projects

Eur Ing Anthony Pickett
Safety and Standards Manager

October 2010
Contents

• Introduction to Union Railway project
• Infrastructure development today
• Project risk factors
• Typical rail project risks
• Principles of risk based safety regulatory regimes
• Safety Cases
• Independent Assurance
• Roles and relationships
• Benefits of Project Assurance
UAE Union Railway

- 1500km double track freight and passenger network across the UAE
- Diesel traction with provision for future electrification
- Design speeds: 120kph (freight), 200kph (passenger)
- Container and/or bulk terminal facilities at 13 locations, 7 at or near ports
- Six tunnels and approximately 300 structures
- Central control facility, maintenance depots and transfer stations
- Implementation schedule 7-8 years
Union Railway plans to operate various types of train service

Bulk & Container Freight
- National & international
- Diesel, 120 km/h max

High Speed Passenger
- Gulf Coast cities
- Electric, up to about 350km/h

Passenger
- National & international, Diesel, 200km/h
Trains will weigh nearly 15,000 tons and will be more than 1.9km long, with 3 locomotives.

Performance has been simulated using data for a modern US 4,400hp Co-Co locomotive design.

Maximum axle load will be 32½ tonnes.

Trains of 110 wagons of 130 tonnes (30 tonnes tare) each, running daily from each loading station, can handle the maximum output.
Infrastructure Development Today

- Competition for public funds to invest in required infrastructure developments is requiring increasing private participation, which results in:
 - More stakeholders to manage (investment banks, government departments, regulatory bodies, private companies, etc.)
 - Increasing pressure for predictable returns and generation of cash for paybacks
 - Variety of organisational structures to manage the long lifecycles of infrastructure projects
Project Risk Factors

<table>
<thead>
<tr>
<th>Large investments</th>
<th>Risk of financial liabilities from failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long timescales</td>
<td>Risk of technical/financial change over the project lifecycle</td>
</tr>
<tr>
<td>Complex systems</td>
<td>Risk to deliver operational performance and safety</td>
</tr>
<tr>
<td>Mix of technologies</td>
<td>Risk from integration of diverse sub-systems and systems</td>
</tr>
<tr>
<td>Differing regulatory, legal and safety regimes</td>
<td>Risk of unclear or conflicting requirements</td>
</tr>
<tr>
<td>Expertise</td>
<td>Risk of few, if any, “organisations” with the capability to deliver all elements</td>
</tr>
</tbody>
</table>
Project Assurance - Purpose

- Ensure Projects are Business Case driven
 - Effective project delivery within time and cost constraints
 - Return on investment over a reasonable period

- Delivery of a system that meets the needs of users and customers
 - Functionality and features
 - Operational performance (Operability, Reliability, Availability, Maintainability, and Safety)

- Delivery of a system that can be supported efficiently
 - Lifecycle support
 - Passive provision
Project Risks
Project Risks

Programme Risk
Project Risks

Programme Risk
+
Technology Risk
Project Risks

Programme Risk
 +
Technology Risk
 +
Application Risk
Project Risks

Programme Risk
+ Technology Risk
+ Application Risk
+ Operability Risk
Project Risks

Programme Risk

+ Technology Risk

+ Application Risk

+ Operability Risk

+ Safety Risk
Project Risks

Programme Risk
 +
Technology Risk
 +
Application Risk
 +
Operability Risk
 +
Safety Risk
 =
Business Risk
Risks ‘Iceberg’

Political and Regulatory Risks

Project Development Risks

Environmental Risks

Construction Risks

Traffic and Demand Risk

Operational Risks

Revenue Risks

Technology and IP Risks

Resource & Expertise Risks

System Integration Risks

Safety and Security Risks

Financial Advisors

Lawyers

Lenders

Insurance

Role of Assurance
Principles of Risk Based Regimes

- Operators wishing to construct and operate a transport system will be required to submit a ‘safety case’ to the nominated transport regulator for acceptance.
- Regulator is responsible to review the submission, and if it is acceptable, issue a Safety Certificate or Licence.
- Transport operators must proactively demonstrate control of risks.
- Transport constructors must demonstrate the safety of future operation during construction and before revenue operation commences.
- Constructors and operators must document the hazards and associated risks, together with measures in place to eliminate and control them.
- Regulator must examine the adequacy of these arrangements and monitor continuing compliance of the operator with their safety and economic responsibilities.
‘Safety Cases’

• Document produced by a transport operator which describes their operations, analyses the hazards and risks from those operations, and explains the control measures such as procedures and managerial systems that the operator has put in place to manage those risks.

• Based around:
 – description of its safety management system (SMS)
 – description of the company’s operations
 – details of systematic risk assessment, including results and analysis of actual accident statistics.

• May be preceded by a (construction) Safety Case prepared by the Contractor, which confirms that the railway has been designed and constructed safely.
SMS elements

- Monitor and Audit
- Delivery
- Standards/ Processes/ Procedures
 - Risk Assessment
 - Development of Safety Targets
 - Accident Reporting
 - Training Requirements
 - Change Management
 - SC Workers (Fatigue)
 - Auditing
 - Emergency Planning
 - Information-Documents Control
- Safety Policy
- Safety Targets
- Organisation, Roles and Responsibilities
 - Auditing
 - Accident Reporting
 - Emergency Planning
 - Information-Documents Control
 - SC Workers (Fatigue)
 - Training Requirements
 - Development of Safety Targets
 - Accident Reporting
 - Professional qualification (i.e. chartership)
- Change Management
- Plan
- General HSE Policy
- Organization, Roles and Responsibilities
- Organizational Chart
- Job SRSs
- Competence Management System CMS
- Risk assessments:
 - TCL RA documents
 - Carillion documents
- Excludes:
 - Asset Policy
 - Asset management
 - Standards
- General HSE Policy
- Stakeholders' Requirements:
 - ORR
 - TOL
- Benchmarking Studies of other tramways
- Infrastructure Failures
- Monitor and Audit
Safety Case Principles

- Safety case regime embodies the following principles:
 - Goal-setting framework rather than a wholly prescriptive
 - Organisation that creates the risks, or is affected by risks created by others, has a duty to manage these risks and describe how they are effectively controlled.
 - Control measures should cover design and hardware, systems and procedures, and human factors.
 - Includes test arrangements for managing emergencies and mitigating their consequences.
 - Safety case regime imposes more rigid frameworks on the safety regulator, and requires more positive regulator engagement than other approaches to regulation.
Independent Safety Assessment

• The ISA service sits in a family of services which, together, can be called Independent Assurance.

• Broadly, Independent Assurance is:
 The deployment of a third party organisation to confirm that a business or project is satisfying its obligations, requirements, and aspirations towards its stakeholders; including its customers, shareholders, employees, government and the general public.

• Specifically, ISA is:
 Provision of expert opinion on the acceptability of the safety risk of a system in a given environment, based upon the evidence provided. This activity is typically undertaken in accordance with international good practice, such as EN50126 or the ‘Yellow Book’.
Why is ISA Necessary?

- Major railway projects typically assume that safety risk will be minimised as an implicit part of system design and manufacturing.
- It is assumed that designers, engineers and operators are aware of key risk issues from training and experience.

Issues:
- Safety critical systems, such as train control systems, need more analysis of the extent of safety risk than non-safety critical systems
- Without a formal approach to safety demonstration:
 - it is not possible to know whether a system has been designed to minimise risk
 - In the event of an incident, there is no evidence that suitable diligence was applied to minimise risk
Why is ISA Necessary?

Engineering
- Design
- Manufacturing
- Testing
- Operations

Safety Engineering
- Safety Plan – How will we demonstrate safety?
- Hazard Identification
- Develop & maintain hazard log
- Analyse hazards to determine unmitigated risk levels
- Assess risk mitigation options and choose options that enable most practicable reduction
- Record outcomes in Safety Case

ISA
- Undertake review
 - Capture observations in safety report
 - Undertake review
 - Capture observations in safety report
 - Undertake review
 - Capture observations in safety report

Feedback – to improve design etc.
Provision of Engineering information

Safety feedback
Safety information
Safety feedback
Safety information
Safety feedback
Safety information
Role and Relationship

Sponsor

Project Company

Lenders

Independent Body

Engineer EPC Contractor Operator

Regulator

Independent Validation

Process compliance
Quality assurance
Other

Design Specification
Business Case
Construction Progress Reports
Change Requests/Implementations
Performance measures and indicators

Supply Chain - Suppliers

Independent Audits
Benefits of Project Assurance

- Identify and resolve problems before they affect the outcome

- Provide an independent view, throughout the project

- Bring greater certainty towards successful rail project delivery

- Independent Certificate that Project has met its objectives.

- Management of technical risks from first Concept stage

- Introduction of international, multi-discipline and cross sector experience

- No vested interests

- Application of global good industry practices

- Safeguarding the business case

- Auditable trail, from an Independent Party, of all key project decisions.
Questions?