

INTERNATIONAL
RAILWAY SAFETY COUNCIL

Project on Safety Performance Indicators and
 Risk Level Assessment of Railway Infrastructure

- Chan-Woo, Park / Duck-Ho, Shin / Sang-Log, Kwak Korea Railroad Research Institute

General information on railways in Korea

4.5 billion railway passengers in Korea (in 2014)

- 218 million train-kms, 71 billion passenger-kms
- A single company (Korea Railroad Corporation (KORAIL) operates all HST and conventional rail by 2015, Single IM From 2016, new company will start HST service
- 14 RUs for subway : mainly owned by regional governments
- Passenger increase trend of about 1~2\%
- About 60,000 staff members work on railway operation and 600 on safety-related work

General information on railways in Korea

- Total of $4,520 \mathrm{~km}$ lines for passenger service
- High-speed track 556km (41\% of the track is in tunnels, 31% on bridges)
- Conventional track 3,270km
- Urban (subway) track 535km (88\% of the track is in tunnels, 8\% on bridges)
- New lines are under construction, new high-speed line will be open in 2016
-Railway Safety Act legislated in 2004, amended in 2014

Background of Project

* Achieved the most rapid decrease in accident rate
* There's only been one railway fatality in the past 11 years

Background of Project

* The railway is considered the safest transportation in Korea
- 25 times safer than road transportation
- 50% of total fatalities come from suicide
- 40\% of total fatalities come from trespassing

	Trasnportation Share \%	Accident Fatalifies (5yrs)	Fatalities/Share	Comparision to railway
Railway	24.90	391	15.7	1
Airplane	0.14	23	164.3	10.4
Road Vehicle	74.85	29,706	396.9	25.3
Maritime	0.11	666	6,054.5	385.6
Total	100	30,786	-	-

Background of Project

> Due to the high density of passengers, in the event of an accident, there will be a huge social impact and passenger rescues and provision of alternate means of transport will be difficult

- In the event of an accident, a much more number of people may be harmed
- Securing alternate means of transport such as buses are difficult (due to lack of maintenance time)

[^0]Chan-Woo, Park / Duck-Ho, Shin / Sang-Log, Kwak

Background of Project

* Concerns for the safety of railway facilities increase due to a high proportion of worn out facilities
- 42\% of the bridges and 44\% of the tunnels are at least 30 years old
- 35\% of equipment including Substation Equipment, Signaling Equipment, and

Communications Equipment has long exceeded the lifespan

Category	2011	2012	2013	2014	2015 July
Total average	29.1%	31.0%	31.8%	31.7%	35.3%
Subway Electricity	9.5%	8.8%	8.8%	9.4%	9.8%
Information and Communication	42.2%	55.0%	58.7%	48.7%	30.9%
Signal Control	33.6%	30.7%	30.6%	34.1%	41.4%

Background of Project

* With the increase of peoples' standard of living, the level of demands for railway services and safety also increases
* It is stipulated in the Railway Track Allocation Guidelines (public announcement by the Ministry of Land, Infrastructure and Transport (MOLIT) that although there must be 3.5 consecutive hours of work time a day on railway tracks for construction, enhancement, and maintenance,
* Railway users (KORAIL) and railway track allocators (Korea Rail Network Authority) may negotiate and adjust work time in accordance with the demand for railway use and required working time

Project Objectives

- Service Objectives
- Indexing and evaluating the safety of facilities in each railway section pursuant to the International Standards for Railway Safety (IEC 62278, RAMS applied to trains)
o Establishing an efficient strategy to maintain railway facilities based on the risk levels
o Researching the level of securing work time on railway tracks and methods and steps for allocating work time in major developed countries

Spatial range: 39 conventional and high-speed railway routes, 406 sections, 680 lines
© Duration of Task: 2015.12.01~2016.02.28

Current Status of Sections With Secured Work Time

* Sections with 3.5 hours of work time secured amount to 67% of 680 sections
-Supposing the duration of a tramline power cut is the only available work time, the sections with 3.5 hours of work time secured amount to 204 sections (out of 578), decreasing to 35.29%

Track block and tramline power cut time	Before adjustment (Until '15.07)				After adjustment (After '15.08)			
	Track block		Tramline power cut		Track block		Tramline power cut	
	Tracks	Percentage	Tracks	Percentage	Tracks	Percentage	Tracks	Percentage
Less than 1 hr	1	0.15\%	16	2.79\%	0	0.00\%	2	0.35\%
At least 1hr~ less than 2 hr	40	5.88\%	54	9.41\%	18	2.65\%	36	6.23\%
At least $2 \mathrm{hr} \sim$ less than 3hr	114	16.76\%	213	37.11\%	97	14.26\%	160	27.68\%
At least 3 hr~ less than 3.5 hr	79	11.62\%	138	24.04\%	111	16.32\%	176	30.45\%
3.5 hr or more	446	65.59\%	153	26.66\%	454	66.76\%	204	35.29\%
Total	680		574		680		578	

Identifying hazardous factors and root causes

* Drew the hazards representing the types of facilities through research and analysis of the list of hazards in railway facilities managed by railway corporations and from risk level assessments carried out by major developed countries such as England, France, the U.S., and Australia
* Analysis of management incident logs
- Drew 50 hazards by categorizing facility related hazardous factors into 10 categories
and root causes per hazardous factor into five categories

Accident frequency indicators

* The 406 sections defined in the task sections have different section distances

* It is difficult to compare the risk levels in sections by simply counting the frequency of accidents in each section. This is because long sections are calculated with high risk levels
Frequency of accidents in each section with converted total operation distance
$=$ (Section " A "'s avg. frequency per year) $x \frac{\text { KORAIL's total distance of operation }}{\text { operation distance of each section }}$

Project on Safety Performance Indicators and Risk Level Assessment of Railway Infrastructure
RAILWAY SAFETY COUNCIL

Event severity indicators

* Used Event Tree Analysis (ETA) method to calculate the probability of an accident developing in each section
* Evaluated the severity of an accident through casualties and train operation delay time

Risk Matrix of IEC 62278, the International Standards for Railway Safety

* Section 4.6.3.4 of IEC 62278, the International Standards for Railway Safety, provides acceptable levels of risk divided into four grades in accordance with the combination of hazard frequency and severity

| Frequency | Severity | Insignificant | Marginal | Critical |
| :---: | :---: | :---: | :---: | :---: | Catastrophic

* The quantitative criteria for frequency and severity for each grade is assigned to each country or project

Accident rate assessment matrix in accordance with the amount of work on and secured work time for railway track

* K-means algorithm

- The clustering method groups large-scale data into a few clusters in accordance with characteristic values
- The K-means algorithm is the most commonly used clustering method

Developing the Risk Matrix

* Applying 3 K-means Algorithm and using the calculated frequency level,

the Risk Matrix can be developed

Severity Frequency (with converted total operation distance of $3,950 \mathrm{~km}$	C1 Service unavailable for less than 10 min or no casualty	C2 Service unavailable for +10~-19 min or +1 minor injury	C3 Service unavailable for +20min~-1 h 59 min or +1 serious injury	C4 Service unavailable for $+2 \mathrm{~h} \sim-7 \mathrm{~h} 59 \mathrm{~min}$ or +1 death	C5 Service unavailable for +8 h~-23 h 59min or +2 deaths	C6 Service unavailable for +24 h or +10 deaths
F6 Annual average +700 cases	B	A	A	A	A	A
F5 Annual average $+300 \sim-699$ cases	B	B	A	A	A	A
F4 Annual average $+170 \sim-299$ cases	B	B	B	A	A	A
F3 Annual average +90~-169 cases	C	B	B	B	A	A
F2 Annual average	C	C	B	B	B	A
F1 Annual average +0~-29 cases	C	C	C	B	B	B

[^1]
Risk level assessment results by applying the Risk Matrix

* When the developed Risk Matrix was applied,
it resulted in Section A being approximately 10\%, Section B 50\%, and Section C 40\%

Root cause		Section A	Section B	Section C
Total root cause COO	No. of sections	41	194	171
	Percentage	10\%	48\%	42\%
Technical cause C01	No. of sections	20	153	233
	Percentage	5\%	38\%	57\%
Technical cause $\mathrm{CO1}+$ Natural disaster CO2	No. of sections	2β	182	201
	Percentage	6\%	45\%	50\%
Technical cause $\mathrm{CO1}+$ Natural disaster $\mathrm{CO} 2+$ Error while maintenance C03	No. of sections	26	195	185
	Percentage	6\%	48\%	46\%

Detailed risk profile of sections with risk level A (41 sections)

- Risk profiles and risk level calculations have been made for 406 sections being managed
- A detailed risk profile for sections with risk level A (41 sections) has been made, as well as a management strategy being established

Project on Safety Performance Indicators and Risk Level Assessment of Railway Infrastructure

Correlation of accident rate

Accident rate assessment matrix in accordance with the number of times work and secured work time

* The secured work time and the number of times work is done on railway track are grouped into a few sections
* The number of times work is done, secured duration of rail work and rate of accidents is grouped using the Kmeans algorithm

[Defining section of converted accident rate considering	
total operation distance]	

[Defining section of the converted number of times work is done on railway
considering total operation distance]
[Defining section of secured work time on railway track]

Section code for secured work time on railway track	Defining secured work time (min) on railway track
E1	Less than 120 min.
E2	120 min . or above - less than 180 min.
E3	180 min . or above - less than 210 min.
E4	210 min . or above - less than 270 min.
E5	270 min . or above - less than 360 min.
E6	360 min. or above - less than 500 min.
E7	500 min. or above

considering total operation distance]	
Section code for no. of works on railway track	Defining section of no. of works on railway track
A1	Less than 22,690
A2	22,690 or above - less than 43,645
A3	43,645 or above - less than 68,566
A4	68,566 or above - less than 117,402
A5	117,402 or above - less than 312,608
A6	312,608 or above

Accident rate assessment matrix in accordance with the number of times work and secured work time

$\begin{aligned} & \text { Time secured } \\ & \text { for } \\ & \text { maintenance } \end{aligned}$	Category	No. of works on railway track with converted total operation distance					
		$\underset{(\mathrm{A}) \mathrm{l})}{\operatorname{Less}} \operatorname{than} 22,690$	$\begin{gathered} 22,690 \text { or above - less than } \\ 43,645 \\ \text { (A2) } \end{gathered}$	$\begin{gathered} 43,645 \text { or above - less than } \\ 68,566 \\ (\mathrm{~A} 3) \end{gathered}$	$\begin{gathered} 68,566 \text { or above - less than } \\ 117,402 \\ \text { (A4) } \end{gathered}$	$\begin{aligned} & \text { 117,402 or above - less than } \\ & 312,608 \\ & \text { (A5) } \end{aligned}$	$\begin{gathered} \text { 312,608 or above } \\ (\mathrm{AC}) \end{gathered}$
Less than 120 min. (E1)	No. of sections	9	6	8	5	0	0
	Converted accident rate	[0.00, 33.61, 113.40]	[0.00, 35.20, 211.23]	[0.00, 103.86, 31499]	[0.00, 19.41, 97.06]	[0.00, 0.00, 0.00]	[0.00, 0.00, 0.00]
	Converted accident rate level	[F1, F2, F3]	[F1, F2, F4]	[F1, F3, F5]	[F1, Fl, F3]	[Fl, Fl, Fl]	[Fl, Fl, Fl]
120 or aboveless than180 min.(E2)	No. of sections	25	10	16	5	1	1
	Converted accident rate	[0.00, 46.02, 147.57]	[0.00, 48.86, 239.39]	[0.00, $86.76,287.27]$	[81.61, 15416, 239.39]	[287.27, 287.27, 287.27]	[579.18, 579.18, 579.18]
	Converted accident rate level	[F1, F2, F3]	[F1, F2, F4]	[F1, F2, F4]	[F2, F3, F4]	[F4, F4, F4]	[F5 FL, Fप]
$\begin{gathered} 180 \text { or above } \\ \text { 1ess than } \\ 210 \text { min. } \\ (\mathrm{E} 3) \end{gathered}$	No. of sections	11	11	29	11	8	3
	Converted accident rate	[0.00, 82.76, 422.46]	[47.25, 196.40, 500.29]	[0.00, 124.73, 37.99]	[0.00, 233.75, 614.33]	[24263, 548. $20,1+4 \times 2$	1,009.94, 1,554.54, 2,347.90]
	Converted accident rate level	[F1, F2, F5]	[F2, F4, F5]	[F1, F3, F5]	[F1, F4, F5]	[F4, F5, F6]	[F6, F6, F6]
$\underset{\substack{210 \text { or above } \\ \text { less than } \\ 200 \text { min. } \\ \text { (E4) }}}{ }$	No. of sections	44	37	24	11	7	i
	Converted accident rate	[0.00, 116.26, 506.41]	[0.00, 109.08, 761.71]	[0.00, 148.19, 1,175.21]	[0.00, 409.47, 1,231.17]	[$0.00,30.43,1,396.46]$	[422.46, 422.46, 422.46]
	$\begin{gathered} \text { Converted accicident } \\ \text { rate level } \end{gathered}$	[F1, F3, F5]	[F1, F3, F6]	[F1, F3, F6]	[Fl, F5, F6]	[Fl, F5, F6]	[F5, F5, F5]
270 or above less than 360 min. (E5)	No. of sections	27	20	12	6	0	0
	$\begin{gathered} \text { Converted } \\ \text { accident rate } \end{gathered}$	[0.00, 17.01, 115.84]	[0.00, 57.86, 251.99]	[0.00, 8865, 189.00]	[0.00, 63.49, 160.79]	[0.00, 0.00, 0.00]	[0.00, 0.00, 0.00]
	$\begin{gathered} \text { Converted acicident } \\ \text { rate level } \end{gathered}$	[F1, Fl, F3]	[F1, F2, F4]	[F1, F2, F4]	[F1, F2, F3]	[Fl, Fl, Fl]	[Fl, Fl, Fl]
360 or aboveless than500 min.(E6)	No. of sections	15	14	4	2	1	0
	$\begin{gathered} \text { Converted } \\ \text { accident rate } \end{gathered}$	[0.00, 39.20, 158.42]	[0.00, 5473, 280.54]	[0.00, 6440, 141.75]	[0.00, 4489, 89.7]]	[0.00, 0.00, 0.00]	[0.00, 0.00, 0.00]
	$\begin{gathered} \text { Converted accident } \\ \text { rate level } \end{gathered}$	[F1, F2, F3]	[F1, F2, F4]	[F1, F2, F3]	[F1, F2, F2]	[Fl, Fl, Fl]	[Fl, Fl, Fl]
$\begin{gathered} 500 \mathrm{~min} \text {. or } \\ \text { above } \\ (\mathrm{E} 7) \end{gathered}$	No. of sections	15	6	0	0	0	0
	$\begin{gathered} \text { Converted } \\ \text { accident rate } \end{gathered}$	[0.00, 2401, 211.23]	[$0.00,0.00,0.00]$	[$0.00,0.00,0.00]$	[$0.00,0.00,0.00]$	[0.00, 0.00, 0.00]	[$0.00,0.00,0.00]$
	Converted accident rate level	[Fl, Fl, F4]	[Fl, Fl, Fl]				

Project on Safety Performance Indicators and Risk Level Assessment of Railway Infrastructure

Conclusion and future plans

* Based on the risk level assessment, the MLIT will:
$>$ secure appropriate work time on railway track per each section, as well as manage the risk level of sections with high risk levels
$>$ continuously assess the risk level of railway facilities in each section
$>$ collect data needed for thorough assessment of the risk level of railway facilities

Thank you.

[^0]: Project on Safety Performance Indicators and Risk Level Assessment of Railway Infrastructure

[^1]: RAILWAY SAFETY COUNCIL

