

# QUANTITATIVE TECHNIQUES IN SAFETY MANAGEMENT

SOMNATH PAL MIRSE, CSTM, CSQP Asst. Prof. (Retd) / INDIAN RAILWAYS INSTT. OF SIGNAL ENGG. & TELECOMMUNICATION

#### **RAILWAY SIGNALING CAN BE DEFINED AS A STATE MACHINE.**



## SIGNAL FAILURES CAN BE SAFE OR UNSAFE (DANGEROUS).

## FAILURES CAN BE DETECTED OR UNDETECTED.

## (UNDETECTED FAILURES ARE CONSIDERED AS DANGEROUS).

## **PROBABILITY OF FAILURE IS GIVEN BY**

 $\lambda_{SYS} = \lambda_{SAFE} + \lambda_{DANGEROUS}$ = (λsD + λsu) + (λDD + λDU)



A PROGRAMMABLE EQUIPMENT CAN HAVE FAILURES DUE TO BOTH HARDWARE AND SOFTWARE.

#### IF HARDWARE FAILURE RATE = $\lambda$ H AND SOFTWARE FAILURE RATE = $\lambda$ S

**OVERALL UNSAFE FAILURE RATE CAN BE EXPRESSED BY** 

 $\lambda unsafe = (\lambda Hpof + \lambda Hdf + \lambda Spof + \lambda Sdf) . (1 - Ppfd)$  $+ (\lambda Htof + \lambda Stof). Pmtf . (1 - Pmtfd)$ 

OR

 $\lambda$ unsafe = ( $\lambda$ Hpof +  $\lambda$ Hdf).(1 – Ppfd) +  $\lambda$ Htof . Pmtf (1 – Pmtfd) + ( $\lambda$ Spof +  $\lambda$ Sdf ).(1 – Ppfd) +  $\lambda$ Stof . Pmtf . (1 – Pmtfd)

#### FAILURE RATES FOR ELECTRONIC SIGNAL EQUIPMENT

| <b>ANALOG INPUT CIRCUIT FAILURE RATE</b>         | = λ <sub>ΑΙ</sub>        |
|--------------------------------------------------|--------------------------|
| NUMBER of ANALOG INPUT CIRCUITS                  | = N <sub>AI</sub>        |
| ANALOG OUTPUT CIRCUIT FAILURE RATE               | <b>=</b> λ <sub>AO</sub> |
| NUMBER of ANALOG OUTPUT CIRCUITS                 | = N <sub>AO</sub>        |
| COMMON CIRCUITRY ANALOG I/O MODULE FAILURE RATE  | $=\lambda_A$             |
| DIGITAL INPUT CIRCUIT FAILURE RATE               | = λ <sub>DI</sub>        |
| NUMBER of DIGITAL INPUT CIRCUITS                 | $= N_{DI}$               |
| DIGITAL OUTPUT CIRCUIT FAILURE RATE              | <b>=</b> λ <sub>DO</sub> |
| NUMBER of DIGITAL OUTPUT CIRCUITS                | = N <sub>DO</sub>        |
| COMMON CIRCUITRY DIGITAL I/O MODULE FAILURE RATE | $= \lambda_D$            |
| LOGIC SOLVER FAILURE RATE                        | <b>=</b> λ <sub>MP</sub> |
| MODULE RACK FAILURE RATE                         | <b>=</b> λ <sub>R</sub>  |
| POWER SUPPLY FAILURE RATE                        | = λ <sub>PS</sub>        |

#### **SAFE AND UNSAFE FAILURE RATES**

$$\lambda^{SD} = n_{DI}\lambda^{SD}_{DI} + n_{DO}\lambda^{SD}_{DO} + \lambda^{SD}_{D} + n_{AI}\lambda^{SD}_{AI} + n_{AO}\lambda^{SD}_{AO} + \lambda^{SD}_{A} + \lambda^{SD}_{MP} + \lambda^{SD}_{R} + \lambda^{SD}_{PS}$$

$$\lambda^{SU} = n_{DI}\lambda^{SU}_{DI} + n_{DO}\lambda^{SU}_{DO} + \lambda^{SU}_{D} + n_{AI}\lambda^{SU}_{AI} + n_{AO}\lambda^{SU}_{AO} + \lambda^{SU}_{A} + \lambda^{SU}_{MP} + \lambda^{SU}_{R} + \lambda^{SU}_{PS}$$

.

$$\lambda^{DD} = n_{DI}\lambda^{DD}_{DI} + n_{DO}\lambda^{DD}_{DO} + \lambda^{DD}_{D} + n_{AI}\lambda^{DD}_{AI} + n_{AO}\lambda^{DD}_{AO} + \lambda^{DD}_{A} + \lambda^{DD}_{MP} + \lambda^{DD}_{R} + \lambda^{DD}_{PS}$$

$$\lambda^{DU} = n_{DI}\lambda^{DU}_{DI} + n_{DO}\lambda^{DU}_{DO} + \lambda^{DU}_{D} + n_{AI}\lambda^{DU}_{AI} + n_{AO}\lambda^{DU}_{AO} + \lambda^{DU}_{A} + \lambda^{DU}_{MP} + \lambda^{DU}_{R} + \lambda^{DU}_{PS}$$

#### **SIGNAL BUTTON CIRCUIT IN RELAY INTERLOCKING**





#### FAULT TREE FOR SAFE FAILURE OF SIGNAL BUTTON RELAY (GNR) OF BRITISH ROUTE RELAY INTERLOCKING



 $\lambda$  safe =  $\lambda_{GNR} + \lambda_{FUSE} + \lambda_{POWER} + \lambda_{WIRING} + \lambda_{CONTACT. FLT (Button)} + \lambda_{Other GNRs (13)}$ 

AS PER RAILTRACK IRM CCA MODEL,

| λ <sub>RELAY (open)</sub>  | = 0.7495 X 10 <sup>-6</sup> / Hr., |
|----------------------------|------------------------------------|
| $\lambda_{RELAY}$ (short)  | = 0.4307 X 10 <sup>-6</sup> / Hr   |
| λ <sub>WIRING (Open)</sub> | = 6.554 X 10 <sup>-8</sup> / Hr.,  |
| $\lambda_{FUSE}$           | = 0.04 X 10 <sup>-6</sup> / Hr.,   |
| λ <sub>POWER</sub>         | = 0.04 X 10 <sup>-6</sup> / Hr.    |

AND AS PER MIL STD. 217F (CONSIDERING 5 OPERATIONS / HR.),  $\lambda_{\text{CONTACT FLT}} = 0.3468 \times 10^{-6}$  / Hr. (for GN Button)

REPLACING THESE VALUES IN THE EQUATION,  $\lambda$ safe = (0.7495 X 10<sup>-6</sup> + 0.4307 X10<sup>-6</sup> + 6.554 X10<sup>-8</sup> + 2 X 0.04 X10<sup>-6</sup> + 0.3468 X10<sup>-6</sup> + 13 X 0.7495 X 10<sup>-6</sup>) / Hr = 1<u>1.416 X 10<sup>-6</sup> / Hr</u>.

#### FAILURE RATE FOR RESISTORS USED IN AXLE COUNTER AS PER MIL 217F ITEM 9.1)

 $\lambda_{B=4.5 X} \mathbf{10}^{-9} \exp \left( \frac{12 (T + 273)}{343} \right) \exp \left( \frac{S}{0.6} (T + 273)}{273} \right)$ 

LET US TAKE AN EXAMPLE – A RESISTOR OF VALUE 2.2 K $\Omega$  OF LOW QUALITY WORKING AT 45 °C WILL HAVE

 $\lambda_{\rm B} = 4.5 \times 10^{-9} \exp \left( \frac{12}{45} + \frac{273}{343} \right) \exp \left( \frac{0.1}{0.6} \times \frac{45}{45} + \frac{273}{273} \right)$ 

 $= 4.5 \times 10^{-9} \exp \left( \frac{12 \times (318)}{343} \exp \left( \frac{0.1666 \times (318)}{273} \right) \right)$ 

 $= 4.5 \times 10^{-9} \exp^{(12 \times 0.92711)} \exp^{(0.1666 \times 1.16483)}$ 

=  $4.5 \times 10^{-9} \exp^{11.12536} \exp^{0.19406}$ 

= 4.5 X 10<sup>-9</sup> X 67870.72 X 1.21417

 $= 370829.399 \times 10^{-9} = 0.00037 / 10^{6}$  Hrs.

THE MODIFIED FAILURE RATE (UNDER STRESS) OF THE RESISTOR  $\lambda_{P} = \lambda_{B} X \Pi_{Q} X \Pi_{E} X \Pi_{R} = 0.00037 X 15 X 3 X 1 = 0.016687/10^{6}$  Hrs.

#### EFFECT OF AMBIENT TEMPERATURE AND COMPONENT QUALITY (AMPL.- RECT.CARD OF CEL AXLE COUNTER)

| Part Description       | λ <sub>P</sub> at 45°C | λ <sub>P</sub> at 30°C | λ <sub>P</sub> at 30°C and<br>better Quality<br>Parts | Contribution percentage |
|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------|
| Capacitors             | 3.120181               | 2.0211954              | 0.4937654                                             | 38.33 %                 |
| Resistors              | 3.5059                 | 2.38384                | 1.01048                                               | 43.07 %                 |
| Semiconductors         | 0.25688                | 0.25688                | 0.112088                                              | 3.15 %                  |
| Transformers<br>& Coil | 1.023                  | 0.8884                 | 0.34558                                               | 12.5 %                  |
| Connectors             | 0.16747                | 0.11847                | 0.0389                                                | 2.05 %                  |
| Reflow<br>Connections  | 0.06541                |                        |                                                       | 0.8 %                   |
| TOTAL                  | 8.13884                | 5.73419                | 1.62183                                               |                         |

CHANGE IN AMBIENT TEMPERATURE IMPROVES FAILURE RATE BY 29.5% AND CHANGE IN COMPONENT QUALITY, ALONG WITH TEMPERATURE, BY 80%

#### FMECA OF AN INPUT INTERFACE CIRCUIT



| Failure I | Modes, Eff | ects and Dia  | agnostic A  | nalysis   |                 |                       |          |            |      |                    |      | ~ ~~~ |      |          |      |
|-----------|------------|---------------|-------------|-----------|-----------------|-----------------------|----------|------------|------|--------------------|------|-------|------|----------|------|
| 1         | 2          | 3             | 4           | 5         | 6               | 7                     | 8        | 9          | 10   | 11                 | 12   | 13    | 14   | 15       | 16   |
| Name      | Code       | Function      | Mode        | Cause     | Effect          | Criticality $\lambda$ |          | Remarks    | Det. | Diagnostics        | Mode | SD    | SU   | DD       | DU   |
| R1-10K    | 4555-10    | Input         | short       |           | Threshold shift | Safe                  | 0.125    |            | (    | )                  | 1    | 0     | 0.13 | 0        | 0    |
|           |            | threshold     | open        | solder    | open circuit    | Safe                  | 0.5      |            |      | l lose input pulse | 1    | 0.5   | 0    | Ő        | Ő    |
| }         |            |               |             | open      |                 |                       |          |            |      |                    |      |       | -    | _        | -    |
|           |            |               | drift low   |           |                 | Safe                  | 0.01     | none until | (    | )                  | 1    | 0     | 0.01 | 0        | 0    |
| ļ         |            |               |             |           |                 |                       |          | too low    |      |                    |      |       |      |          |      |
|           |            |               | drift high  |           |                 | Safe                  | 0.01     | none until | -    | l lose input pulse | 1    | 0.01  | 0    | 0        | 0    |
| Deter     | 1555 100   |               |             |           |                 |                       |          | too high   |      |                    |      |       |      |          | ľ    |
| R2100K    | 4555-100   | current limit | short       |           | short input     | Safe                  | 0.125    |            | 1    |                    | 1    | 0.13  | 0    | 0        | 0    |
|           |            |               | open        | solder    |                 | Safe                  | 0.5      |            | -    | l lose input pulse |      | 0     | 0    | 0.5      | 0    |
|           |            |               |             | open      |                 |                       |          |            |      | <b>F F</b>         |      | •     | •    | 0.0      | Ŭ    |
|           |            |               | drift low   |           |                 | Safe                  | 0.01     | none until | (    | )                  | 1    | 0     | 0.01 | 0        | o    |
|           |            |               |             |           |                 |                       |          | too low    |      |                    |      |       |      |          |      |
|           |            |               | drift high  |           |                 | Safe                  | 0.01     | none until | 1    | l lose input pulse | 1    | 0.01  | 0    | 0        | 0    |
|           |            |               | _           |           |                 |                       |          | too high   |      |                    |      |       |      |          |      |
| D1        | 4200-7     | voltage       | short       | surge     | overvoltage     | Safe                  | 2        |            | 1    | lose input pulse   | 1    | 2     | 0    | 0        | 0    |
|           |            | drop          |             |           |                 | ~ ′                   | _        |            |      |                    |      |       |      |          |      |
|           |            |               | open        |           | open circuit    | Safe                  | 5        |            | 1    | lose input pulse   | 1    | 5     | 0    | 0        | 0    |
| 20        | 4200-7     | voltage       | chort       | curao     | ovonioltogo     | Safa                  | <b>^</b> |            |      |                    |      | ~     | ~    |          |      |
|           | 42.00-7    | dron          | SHOR        | surge     | overvollage     | Sale                  | 2        |            |      | iose input puise   | 1    | 2     | 0    | 0        | 9    |
|           |            | diop          | onen        |           | open circuit    | Safe                  | 5        |            | 4    |                    | 4    | 5     | 0    | 0        |      |
|           |            |               | opon        |           | opon unoun      | Quie                  | v        |            | I.   | iose input puise   | 1    | 5     | U    | U        | 4    |
| OC1       | 4805-25    | isolate       | led dim     | wear      | no liaht        | Safe                  | 28       |            | 1    | Comp.              | 1    | 28    | 0    | ٥        | 0    |
|           |            |               |             |           |                 |                       |          |            |      | mismatch           | •    | 20    | Ŭ    |          | Ň    |
| 1         |            |               | tran. short | internal  | read logic 1    | Dang.                 | 10       |            | 1    | Comp.              | 0    | 0     | 0    | 10       | o    |
|           |            |               |             | short     | •               | Ū                     |          |            |      | mismatch           | •    | •     | •    | Ű        | / 1  |
|           |            |               | tran. open  |           | read logic 0    | Safe                  | 6        |            | 1    | Comp.              | 1    | 6     | 0    | 0        | ol   |
|           |            |               |             |           |                 |                       |          |            |      | mismatch           |      |       |      |          | [    |
| OC2       | 4805-25    | isolate       | led dim     | wear      | no light        | Safe                  | 28       |            | 1    | Comp.              | 1    | 28    | 0    | 0        | 0    |
|           |            |               |             |           |                 |                       |          |            |      | mismatch           |      |       |      | $\frown$ |      |
|           |            |               | tran. short | internal  | read logic 1    | Dang.                 | 10       |            | 1    | Comp.              | 0    | 0     | 0    | 10       | / 0  |
|           |            |               |             | short     |                 | <b>_</b> .            |          |            |      | mismatch           |      |       |      |          |      |
|           |            |               | tran. open  |           | read logic 0    | Safe                  | 6        |            | 1    | Comp.              | 1    | 6     | 0    | 0        | 0    |
| 001/00    | ~          |               |             |           |                 | -                     |          |            | -    | mismatch           |      |       |      | - 1      |      |
| 001/002   | 2          |               | cross chan  | nei short | same signal     | Dang.                 | 0.01     |            | 0    |                    | 0    | 0     | 0    | 0        | 0.01 |

| R3-100K | 4555-100 | filter             | short                | lose filter      | Safe     | 0.125           | 0                     | 1      | Ō    | 0.13 | Ō    | o    |
|---------|----------|--------------------|----------------------|------------------|----------|-----------------|-----------------------|--------|------|------|------|------|
|         |          |                    | open                 | input float high | Dang.    | 0.5             | 1 Comp.<br>mismatch   | 0      | 0    | 0    | 0.5  | 0    |
| R4-10K  | 4555-10  | voltage<br>divider | short                | read logic 0     | Safe     | 0.125           | 1 Comp.<br>mismatch   | 1      | 0.13 | 0    | 0    | 0    |
|         |          |                    | open                 | read logic 1     | Dang.    | 0.5             | 1 Comp.<br>mismatch   | 0      | 0    | 0    | 0.5  | 0    |
| R5-100K | 4555-100 | filter             | short                | lose filter      | Safe     | 0.125           | 0                     | 1      | 0    | 0.13 | 0    | 0    |
|         |          |                    | open                 | input float high | Dang.    | 0.5             | 1 Comp.<br>mismatch   | 0      | 0    | 0    | 0.5  | 0    |
| R6-10K  | 4555-10  | voltage<br>divider | short                | read logic 0     | Safe     | 0.125           | 1 Comp. '<br>mismatch | 1      | 0.13 | 0    | 0    | 0    |
|         |          |                    | open                 | read logic 1     | Dang.    | 0.5             | 1 Comp.<br>mismatch   | 0      | 0    | 0    | 0.5  | 0    |
| C1      | 4350-32  | filter             | short                | read logic 0     | Safe     | 2               | 1 Comp.<br>mismatch   | 1      | 2    | 0    | 0    | 0    |
|         |          |                    | open                 | lose filter      | Safe     | 0.5             | 0                     | 1      | 0    | 0.5  | 0    | 0    |
| C2      | 4350-32  | filter             | short                | read logic 0     | Safe     | 2               | 1 Comp.<br>mismatch   | 1      | 2    | 0    | 0    | 0    |
|         |          |                    | open                 | lose filter      | Safe     | 0.5             | 0                     | 1      | 0    | 0.5  | 0    | 0    |
|         |          |                    | <u> </u>             |                  |          | 110.8           |                       |        | 86.9 | 1.4  | 22.5 | 0.01 |
|         |          |                    | Total Failure Rate   |                  |          | 110.8           | Safe Coverage         | 0.9839 |      |      |      |      |
|         |          |                    | Total Safe Failure R | ate              |          | 88.29           | Dang.<br>Coverage     | 0.9996 |      |      |      |      |
|         |          |                    | Total Dangerous Fai  | lure Rate        |          | 22.51           | u u u u u u           |        |      |      |      |      |
|         |          |                    | Safe Detected Failur | e Rate           |          | 86.895          |                       |        |      |      |      |      |
|         |          |                    | Safe Undetected Fai  | lure Rate        |          | 1.395           |                       |        |      |      |      |      |
|         |          |                    | Dangerous Detected   | Failure Rate     |          | 22.5            |                       |        |      |      |      |      |
|         |          |                    | Dangerous Undetect   | ed Failure Rate  |          | 0.01            |                       |        |      |      |      |      |
|         |          |                    |                      |                  | Failures | per Billion Hou | rs                    |        |      |      |      |      |

#### **EVENT TREE ANALYSIS**





#### RELIABILITY BLOCK DIAGRAM OF UNIVERSAL AXLE COUNTER.



#### CALCULATING INDIVIDUAL RELIABILITY VALUES, WE FIND

R1 = 0.99995963, R2 = 0.9999617, R3 = 0.9999894, R4 = 0.9999978 AND R5 = 0.9999942

 $R_{SYS} = R1 X R2 X R3 X R4 X R5$ 

= (0.99995963 X 0.9999617 X 0.9999894 X 0.9999978 X 0.9999942) = 0.999902865

SEPARATELY CALCULATING  $R_{SYS}$  FROM  $\lambda_{SYS}$  THE VALUE IS 0.999902897

#### FAILURE RATE OF A TYPICAL ELECTRONIC INTERLOCKING EQPT.

| SUB-SYSTEM<br>NAME             | <u>QTY</u> | FAULTS/10 <sup>6</sup> Hr | <u>TOTAL</u><br>FAULTS/10 <sup>6</sup> Hr |
|--------------------------------|------------|---------------------------|-------------------------------------------|
| PROCESSOR BOARD                | 1          | 2.14470                   | 2.1447                                    |
| I/O BUS INTERFACE BOARD        | 1          | 2.8679                    | 2.8679                                    |
| CODE SYSTEM INTERFACE<br>BOARD | 1          | 2.9182                    | 2.9182                                    |
| PERIPHERAL BOARD               | 1          | 2.1412                    | 2.1412                                    |
| CPU POWER SUPPLY               | 1          | 1.5545                    | 1.5545                                    |
| <b>12V INPUT BOARD</b>         | 7          | 1.2741                    | 8.9187                                    |
| RELAY DRIVER BOARD             | 7          | 0.7102                    | 4.9714                                    |
| I/O POWER SUPPLY               | 1          | 0.8234                    | 0.8234                                    |
| TOTAL                          |            |                           | 26.34                                     |

#### **BUT RELIABILITY IS REDUCED WITH TIME !**

| Const.<br>Failure<br>Rate /<br>Hr | After 1<br>Year | After 2<br>Years | After 3<br>Years | After 4<br>Years | After<br>5Years |
|-----------------------------------|-----------------|------------------|------------------|------------------|-----------------|
| 3 /10 <sup>7</sup><br>Hrs         | 99.7375%        | <b>99.4758%</b>  | 99.2147%         | 98.9543%         | 98.6946%        |
| 3 /10 <sup>8</sup><br>Hrs         | 99.9723%        | 99.9474%         | 99.9212%         | 99.8949%         | 99.8687%        |

#### RELIABILITY AT THE END OF LIFE MUST BE USED TO DETERMINE THE INITIAL RELIABILITY.

#### **2003 ARCHITECTURE**



#### **2003 ARCHITECTURE MARKOV DIAGRAM**



#### PFD FAULT TREE FOR 2003 SYSTEM



 $+(\lambda^{DUN}*TI)^{2}/3]$ 

#### **COMPARISON BETWEEN ANALYSIS TECHNIQUES**

| ANALYSIS TECHNIQUES                  | FMECA        | RBD          | FTA          | HYBRID<br>TECHNIQUE | MARKOV<br>MODEL |
|--------------------------------------|--------------|--------------|--------------|---------------------|-----------------|
| ASPECTS COVERED                      |              |              |              |                     |                 |
| EFFECTS OF REDUNDANCY                |              | $\checkmark$ | $\checkmark$ | $\checkmark$        | $\checkmark$    |
| COMMON CAUSE FAILURES                |              | $\checkmark$ | $\checkmark$ | $\checkmark$        | $\checkmark$    |
| SYSTEMATIC FAILURES                  | $\checkmark$ | $\checkmark$ | $\checkmark$ |                     | $\checkmark$    |
| EFFECTS OF DIAGNOSTICS               | $\checkmark$ |              | $\checkmark$ | $\checkmark$        | $\checkmark$    |
| <b>EFFECTS OF TEST &amp; REPAIR</b>  |              |              | $\checkmark$ | $\checkmark$        | $\checkmark$    |
| TIME / SEQUENCE<br>DEPENDENT ASPECTS |              |              |              |                     | $\checkmark$    |

#### **BATH TUB CURVE (HAZARD RATE vs TIME)**



 $T_B$  = possible burn-in time  $T_W$  = wear begins

#### IMPROVEMENT IN LIFE-TIME RESULTING FROM AN INITIAL BURN-IN PERIOD

LET A COMPONENT FOR AXLE COUNTER CARD HAVE A DECREASING FAILURE RATE OF  $\lambda$ T = 0.0005 (T /1000) <sup>-0.5</sup>/ YEAR. FIND THE INFLUENCE OF A BURN-IN PERIOD OF 6 MONTHS ON THE LIFE-TIME OF THE COMPONENT, CONSIDERING RELIABILITY OF 0.9.

<u>Answer:</u>  $R_{(t)} = 0.9$ , i.e. exp [- (t /1000)<sup>- 0.5</sup> = 0.9 FROM THIS,

 $t = 1000 \{-\ln (0.9)\}^2 = 1000 X (0.10536)^2 = 1000 x 0.0111 = 11.1 Yrs$ 

WHEN A BURN-IN PERIOD OF 6 MONTHS (0.5 YR) IS INTRODUCED,  $R_{(t | T)} = 0.9$ , i.e.

 $\exp \left[-(t + 0.5 / 1000)^{-0.5}\right] / \exp \left[-(0.5 / 1000)^{-0.5}\right] = 0.9$ 

t = 1000 {- ln 0.9 + (0.5 /1000)<sup>- 0.5</sup>}<sup>2</sup> - 0.5 = 1000 {0.10536 + 0.02236}<sup>2</sup> - 0.5 = 1000 {0.12772}<sup>2</sup> - 0.5 = (1000 X 0.1631) - 0.5 = 16.31 - 0.5 = 15.81 Yrs

AN INCREASE OF 4.71 YRS IN THE DESIGNED LIFE OF THE COMPONENT.

## **SPARE PARTS CALCULATION**

LET  $\lambda = 1 \times 10^{-5}$  / hr. BE THE CONSTANT FAILURE RATE OF A VITAL SPARE PART IN A SYSTEM. THERE ARE 6 SYSTEMS INSTALLED AND A CUMULATIVE OPERATING TIME OF 50,000 HRS FOR EACH SYSTEM IS NEEDED. DESIRED SYSTEM RELIABILITY IS  $\geq$  0.99. HOW MANY SPARE PARTS ARE NEEDED?

ANSWER: FOR CENTRALIZED STORE

NO. OF FAILURES =  $50000 / 100000 = 0.5 \approx 1$  AND RELIABILITY = 0.99

FOR THIS VALUE, d = 2.33 (FROM STANDARD NORMAL DISTRIBUTION TABLE) AND kd/2 = 1.165, as k (COEFFICIENT of DISTRIBUTION) = 1

Now  $KT\lambda = 6x50000x0.00001 = 3$ , where K = No. of SYSTEMS So, n =  $[kd/2 + {(kd/2)^2 + KT\lambda}^{1/2}]^2$ =  $[1.165 + {(1.165)^2 + 3}^{1/2}]^2$ =  $[1.165 + 2.0874]^2 = (3.2524)^2 = 10.57 \approx 11$  FOR DECENTRALIZED STORE

NO. OF FAILURES =  $50000 / 100000 = 0.5 \approx 1$ INDIVIDUAL RELIABILITY AT EACH SYSTEM IS  $(0.99)^{1/6} = 0.99888$ 

FOR THIS VALUE, **d = 2.99** (FROM **STANDARD NORMAL DISTRIBUTION Table**) AND **kd/2 = 1.495** 

NOW KT $\lambda$  = 50000x0.00001 = 0.5

So, 
$$n = [kd/2 + {(kd/2)^2 + KT\lambda}^{1/2}]^2$$
  
=  $[1.495 + {(1.495)^2 + 0.5}^{1/2}]^2$   
=  $[1.495 + 1.6538]^2$   
=  $(3.783)^2 = 9.915 \approx 10$ 

FOR THE SYSTEM HAVING **SIX EQUIPMENT**, **TOTAL SPARES NEEDED** WILL BE **60**.

SO, DECENTRALIZED STORES NEED MUCH MORE SPARES.

#### **ADEQUACY OF SPARE PARTS**

SUPPOSE A COMPONENT IN A SIGNALLING EQUIPMENT HAS A FATIGUE RATE OF 0.000003/ Hr. SIGNAL REPAIR SHOP HAS PROCURED TWO SPARE COMPONENTS. IF THE DESIGN LIFE OF THE EQUIPMENT IS 20 Yrs, WHAT IS THE PROBABILITY THAT SPARES WILL BE ADEQUATE FOR 10 SUCH EQUIPMENT?

**ANSWER** 

**EXPECTED FAILURES DURING EQUIPMENT LIFE IS** 

 $= 10X3X10^{-6}X20X8760 = 5.256.$ 

PROBABILITY OF ≤ 2 FAILURES IN 20 Yrs,

$$R_{(20)} = \sum \{e^{-5.256} (5.256)^{n} / N! \}$$

$$n = 0$$

$$= e^{-5.256} \{(5.256)^{0} / 0! + (5.256)^{1} / 1! + (5.256)^{2} / 2!$$

$$= 0.005216 \{1 + 5.256 + 13.812768\}$$

$$= 0.005216 X 20.068768$$

$$= 0.1046787$$

#### INFLUENCE OF PERIODICAL INSPECTION ON AVAILABILITY

LET US CONSIDER A UNIVERSAL AXLE COUNTER EQUIPMENT HAVING A CONSTANT FAILURE RATE OF 0.0000971 FAILURE/ 10<sup>6</sup> HRS.

ANY DEFECTIVE COMPONENT WOULD BE REPLACED / REPAIRED, IF FOUND DEFECTIVE DURING THE PERIODIC INSPECTION.

THE INSPECTION TIME IS 1 HR AND REPAIR / REPLACEMENT TAKES 8 HRS (WORST CASE).

WHAT IS THE OPTIMUM TIME BETWEEN INSPECTIONS?

ANSWER:

WE USE THE FORMULA  $A_{(T)} = (1 - e^{-\lambda T}) / \lambda [T + t1 + t2 (1 - e^{-\lambda T})]$ 

WHERE,  $\lambda = 0.0000971$ , t1 = 1 hr, t2 = 8 hr and T = INSPECTION PERIODICITY.

LET US CONSIDER 168 HRS, 336 HRS, 504 HRS AND 672 HRS AS THE INSPECTION INTERVALS AND FIND AVAILABILITY AT THESE PERIODS.

| T (Hr)           | 96      | 168       | 240     | 336      | 504       | 672       |
|------------------|---------|-----------|---------|----------|-----------|-----------|
| A <sub>(T)</sub> | 0.98434 | 0.9852598 | .983582 | .9801959 | 0.9732559 | 0.9662714 |

$$A_{(96)} = 0.98434 \text{ AND } A_{(240)} = 0.983582$$

WE NOW CONSIDER INSPECTION PERIODICITY OF 96 HRS AND 240 HRS.

**MAXIMUM AVAILABILITY IS FOR AN INSPECTION INTERVAL OF 168 HRS.** 

 $A_{(336)} = 0.9801959$ ,  $A_{(504)} = 0.9732559$ ,  $A_{(672)} = 0.9662714$ 

**BY SIMILAR CALCULATIONS, WE FIND THE VALUES:** 

#### = 0.9852598

- = 0.0161804 / [0.0000971 X 169.1294432] = 0.0161804 / 0.01642247
- = 0.0161804 / [0.0000971 {169 + 8 X(0.0161804)}]
- = (1-0.98388195) / [0.0000971 {169 + 8 (1-0.98388195)}]
- $= (1 e^{-0.0163128}) / [0.0000971 \{ 169 + 8(1 e^{-0.0163128}) ] \}$
- $A_{(168)} = (1 e^{-0.0000971 \times 168}) / [0.0000971 \{ 168 + 1 + 8(1 e^{-0.0000971 \times 168}) \}]$

#### **EXAMPLE OF QUANTIFICATION OF SOFTWARE TESTING**

| TOTAL STATEMENTS                   | = 10     |
|------------------------------------|----------|
| NESTED LEVEL                       | = 4      |
| TOTAL LINES                        | = 79     |
| SOURCE ONLY LINES                  | = 21     |
| <b>SOURCE &amp; COMMENTS LINES</b> | = 0      |
| <b>COMMENTS ONLY LINES</b>         | = 55     |
| EMPTY LINES                        | = 3      |
| COMMENTS LINES RATE                | = 69.62% |

#### **SOME SAFETY QUANTIFICATION PARAMETERS**

| FAILURE RATE                   | = 10 <sup>-6</sup> /Hr |
|--------------------------------|------------------------|
| SAFE FAILURE RATIO             | > 0.99                 |
| DIAGNOSTIC COVERAGE FACTOR     | = 0.99                 |
| <b>COMMON CAUSE (β) FACTOR</b> | = 0.05                 |
| REPAIR TIME                    | = 4 Hrs. TO 1 DAY      |
| PROOF TEST TIME                | = 0.25 TO 1 YEAR       |
| PROOF TEST COVERAGE FACTOR     | = 0.8                  |
| TIME TO COMPLETE OVERHAUL      | = 4 TO 6 YEARS         |

#### FAULT TREE ANALYSIS.

#### **FMECA AND FAULT INJECTION TECHNIQUES.**

#### MARKOV DIAGRAM AND ANALYSIS.

#### **RELIABILITY BLOCK DIAGRAMS.**

#### HAZARD IDENTIFICATION AND RANKING.

#### SAFETY INTEGRITY LEVEL CALCULATION.

#### **CAUSAL & CONSEQUENCE ANALYSIS.**

LOSS, OPTIONS & IMPACT ANALYSIS.

#### **ACKNOWLEDGEMENT**

# **IRSC FOR EXTENDING OPPORTUNITY TO DELIVER THIS PRESENTATION.**

#### ALESSANDRO BIROLINI & CHARLES E. EBELING (FOR REFERENCE BOOKS)

#### **KASTURI AND POUSHALI (DAUGHTERS)** FOR PREPARING THE SLIDES.

**POUSHALI FOR SUGGESTIONS IN SUBJECT MATTERS.** 

**MY FAMILY & IRISET TRAINEES FOR ENCOURAGEMENT.** 



**TACK** !

# СПАСЙБО!

σας ευχαριστώ

# **DANKE SCHÖN !**



# 谢谢





**MERCI**!

**THANK YOU!** 

