

Safety Integrity Level allocation shared or divergent practices in the railway domain

The transport of the future and the imperatives of safety

K. Abel Ouedraogo, Researcher (IFSTTAR)

Julie Beugin, El-Miloudi El-Koursi (IFSTTAR), Joffrey Clarhaut, Dominique Renaux (UVHC) and Frédéric Lisiecki (EPSF)

Contents

- Introduction
- From the allocation of safety targets to Safety Integrity Levels allocation within a railway risk management process
- SIL use/allocation practices according to railway actors
- Toward a SIL allocation methodology
- Conclusion

Introduction

Development of a generic methodology for SIL determination and allocation in a railway system (especially TCMS):

- Generic methodology/guide: harmonized? European?
- Linked with: Common Safety Method (CSM), railway standards.

Project: 2 years (From June 2013 to June 2015)

Funded by: **EPSF**

Research partners: IFSTTAR and TEMPO (University of Valenciennes)

Introduction

SIL - used to specify the safety requirements of safety-related functions performed by Electrical/Electronic/Programmable Electronic (E/E/PE) system

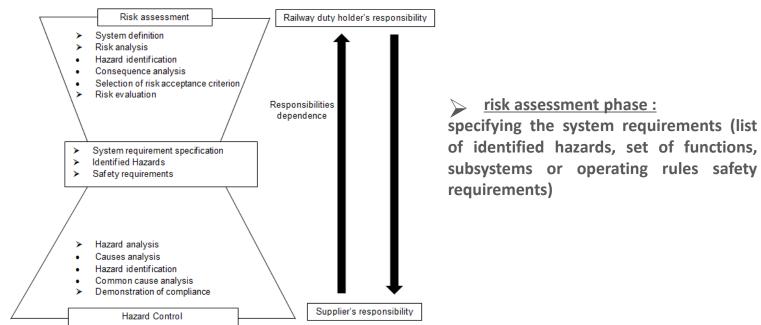
- characterized by discrete indicators : a four level scale
- SIL 4 is the most constraining safety level and SIL 1 is the lowest one (sometimes 5 levels are used with SIL 0).

Various methodologies are adopted to perform the SIL allocation : from a rigorous quantitative estimation to a simple qualitative evaluation.

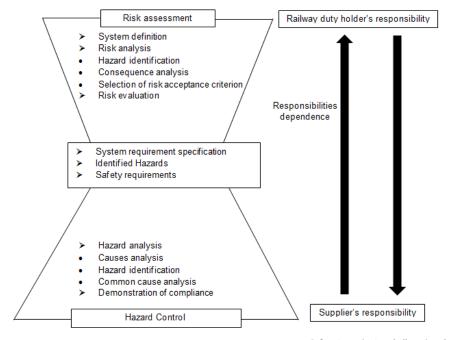
Several issues in the need to harmonize SIL allocation methodology:

- The poor harmonization of definition across the different standards which utilize SIL concept;
- The derivation of SIL based on reliability estimates and system complexity.

Introduction


Discussions results stemming from various rail stakeholders' consultations on their SIL use and/or allocation practices.

Shared and divergent practices in the SIL allocation leading to a homogeneous allocation methodology proposition


Fig. 1. The methodology description and its implementation are presented in detail in [1].

The Hourglass Model: overview of the major safety-related activities during the development of a technical system (including the corresponding responsibility).

The Hourglass Model: overview of the major safety-related activities during the development of a technical system (including the corresponding responsibility).

hazards control:

ensuring/demonstrating that the specified system is in compliance with safety requirements (determination and analysis of the system internal causes and the appropriate measures implementation).

SIL use according to railway actors _{1/2}

3 points of views on SIL uses are different and contradictory depending on choices made by involved railway stakeholders (rail duty holder, manufacturers, or notified bodies).

Description of a SIL particular use	Point of view 1	Point of view 2	Remarks
1. SIL 0 use additionally to other levels (SIL 1 to SIL 4)	SIL 0 is allocated to non-safety related functions. These functions, however, are considered as a first step to risk reduction. This type of function, although developed with a low level of confidence, brings a minimum but useful risk reduction (e.g., reduction of the accident occurrence less than or equal to a factor of 10).		- Standard EN 50128-2001 uses SIL 0 for non-safety related functions performed by software while the 2011 version uses the SIL 0 for functions that have an impact on safety, although this impact is low Standard prEN 50126 introduced the concept of basic integrity (not yet adopted). This notion is based on the point of view 1.

SIL use according to railway actors _{2/2}

Description of a SIL particular use	Point of view 1	Point of view 2	Remarks
2. SIL for a function combining two dependent or independent sub- functions among each other	The THR logic only is considered. Then a SIL is allocated according to THR range associated to the function regarding the independence of its sub-functions.	Functions with a low-level of SIL can be combined to obtain a function with a higher SIL level (e.g., a SIL 4 function can be obtained by two independent SIL2 subfunctions)	The concept of independence is not clearly achieved yet (in standard prEN 50126) because if there is dependency, the model that fits it is needed. The approach of EN50126 is still under discussion and might evolve.
3. Function involving a human operator	Human operator is taken into account in the studies (impact on SIL allocation) by considering it as a reliable (resilient) or, in contrast, unreliable.	Human operator is excluded.	In "acquire an emergency break request" function case, a set of solutions is possible as, request triggered by the driver after an alarm in the cab or by an automatic detection mechanism. The corresponding SIL might be the same regardless the solution.

THR (Tolerable Hazard Rate)

SIL allocation practices _{1/7}

4 SIL allocation practices (and associated actor's reactions) are different and contradictory depending on choices made by involved railway stakeholders.

Allocation approach	Practice 1	Practice 2	Remarks and Examples
characteristic			
1. Consequence	Allocation approaches	The Function demand	- Practice 1 tends to be banned.
severity associated	show a direct link	rate (depending on	- Practice 2 can be illustrated by the following
to the function	between SIL and the	hazard occurrence	example: the overspeed protection is not
failure for SIL	severity of functional	frequency) associated	critical if there is no overspeed situation.
allocation	failure.	with the severity if it fails,	
		allows a SIL	
		determination.	

Ref.	Operators	Notified Bodies	Manufacturers		
Table					
2					
1.	Practice 2: Depending on the haza	rd consequences severity, a safety t	arget associated to the hazard is defined in		
	terms of occurrence. If the accident is catastrophic, given the European regulation 402/2013 on Common Safety				
	Method, a function failure leading	directly to the hazard occurrence h	as to be 10E-9 per hour; if it's critical, the		
	occurrence has to be 10E-7 per hou	ir (these values refer to the CSM-De	sign Targets, which exclude human factors		
	and operating rules as safety meas	ures).			

SIL allocation practices _{2/7}

SIL allocation practices

Allocation	Practice 1	Practice 2	Remarks and Examples
approach			
characteristic			
2. Level of	Identification of all	Identification of each	- In practice 2, a preliminary step is to use
breakdown of	functional failure	scenario from a given	the risk graph as a method for allowing a
accident causes	causes leading to	accident in which	prior SIL allocation ('conservative' results),
in functional	the hazard	event combinations	i.e., it leads to levels which the associated
causes for SIL		from technical, human	safety requirements are more constraining
allocation (i.e.,		or operational origin	than actually needed.
stop level?)		can jointly occur.	-

SIL allocation practices _{3/7}

Actor's reactions on this SIL allocation practice

Ref.	Operators	Allocation approach characteristic 2. Level of breakdown of	Identification of all		- In practice 2, a preliminary s the risk graph as a method f	
2	Remark: For the operator, SIL allocations provided by the	Practice 1:- There is an activity			m actor at the ocate functional	
	manufacturers include a large heterogeneity in the details provided. The necessary breakdowns level is the one that ensures the	by the infrastructure manager of the operator for a given function failure mode (some THR are defined by European legal text as TSI). How to meet this target	r requirements n → Design ch e analysis in or s is safe or n rather than al	to lower leve noices, to pe rder to identif not (demonst		
	demonstration	 In a functional allocatio approach, the requirement is o function (regardless of the syster technology in use). 	n			

SIL allocation practices 4/7

SIL allocation practices

Allocation approach characteristic	Practice 1	Practice 2	Remarks and Examples
3. Item concerned by a safety target allocation (target obtained prior to the SIL)	Allocating a target on the identified functions from the system under consideration (e.g., rolling stock)	target related to hazard (in a specific	hazard, there will be a risk part that will be supported by the infrastructure, another by the operator and another by the rolling

SIL allocation practices _{5/7}

Actor's reactions on this SIL allocation practice

			approach	Tractice 1		1 luctice 2	Remarks and Examples
Ref.	Operators	Notified Bodies			Manu	ıfacturers	
Table							
2							
3.	Practice 1: The operator has to control external events (especially risk reduction brought by the system external barriers,): not the same external events according to the operated lines (conventional line, automated line, driverless line with specific procedures).	- Practice 1 ar observations at safety target can hazard (dangeror operator may s directly SIL x for	European le be allocated us situation) ometimes c	vel: a d to a or an	hazard this hactors syste Rema	d considering azard (scens have to make) ark: BDT has a de: the lower	should be assigned to a general the accident implying ario), and then different reach this target at the level irect impact on the THR the SDT is, the higher

Practice 1

Practice 2

Remarks and Examples

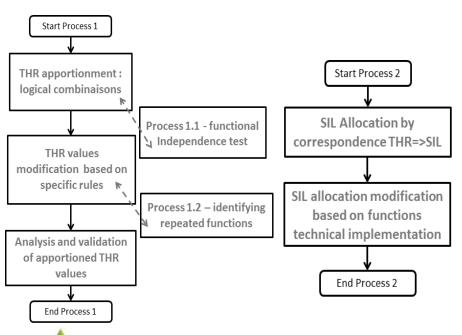
SIL allocation practices 6/7

SIL allocation practices

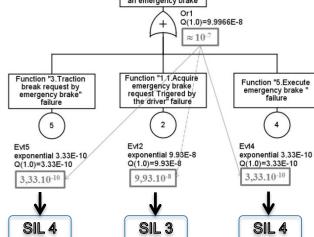
Allocation approach characteristic	Practice 1	Practice 2	Remarks and Examples
4. Allocation practices in various accident scenarios involving the same function		n is active in several constraining requirement sed.	Automatic emergency braking triggered by the train driver or triggered as soon as the train losses its catenary power supply.

SIL allocation practices 7/7

Actor's reactions on this SIL allocation practice


Allocation	Practice 1	Practice 2	Remarks and Examples
approach			
characteristic			
4. Allocation	If the same function	n is active in several	Automatic emergency braking triggered by
practices in	scenarios, the most of	constraining requirement	the train driver or triggered as soon as the
various accident	from all scenarios is u	ised.	train losses its catenary power supply.
scenarios			
involving the			
same function			

Ref.	Operators	Notified Bodies	Manufacturers
Table			
2			
4.			Specifications on accident scenarios:
			These scenarios are jointly defined
			between the manufacturer and its
			suppliers to fix a safety target. At the
			rolling stock level, the manufacturer
			receives information on the safety
			performance of supplier's equipment in
			order to verify if the proposed equipment
			performance can be selected or if new
			more robust equipment should be
			developed.



Toward a SIL allocation methodology

Overview of process 1 & 2: THR apportionment and SIL allocation

RAILWAY SAFETY COUNCIL

Conclusion

Highlighted and focused on the **SIL allocation shared or divergent practices in railway domain:**

- different points of views related to SIL uses,
- different SIL allocation practices and
- the associated actor's reactions on these allocation practices are described with examples.

The retained practices are included in a methodology for a harmonized SIL allocation method.

Possible evolutions according to the changes in regulations

Thank you for your attention

Abel Ouedraogo

IFSTTAR – French institute of science and technology for transport, spatial planning, development and networks

COSYS – Components and Systems

ESTAS – Evaluation and safety of automated transport systems

abel.ouedraogo@ifsttar.fr

