Analysis of railway accidents using the „Why-Because Analysis“
Accidents can only lead to improvements when we understand why something happened.

V-model of accident investigation:

- Accident
 - Collection of information
 - Accident reconstruction
 - Accident analysis
 - Root cause analysis
 - Answer to why it happened

- Global measurements
 - Relevance analysis
 - Transfer to related event types
 - Decrease occurrence of related events

- Lokal measurements
 - Decrease occurrence of event type
 - Analysis methods are crucial for ensuring improvement

Learning to improve.
An analysis method should provide a standard procedure, completeness and objectivity

Main threats in accident analysis
- quality of analysis depending on quality of analyst
- monocausal thinking
- direction of analysis and presentation of result influenced by (political) interests

Main requirements for analysis method
- standard analyzing procedure
- completeness - identification of all the root causes
- objectivity - unaffected to questions of “who is to blame” or political interests

Agenda of presentation
1. methods in accident analysis
2. introduction of Why-Because Analysis
3. analysis example using Why-Because Analysis
4. evaluations and conclusions
Why-Because Analysis was chosen out of many methods by benchmark analysis

1. Methods in accidents analysis

Multitude of Methods

- More than 40 methods developed since 1950
- Different approaches
 - event based
 - systemical
 - resilience engineering

Benchmark

- Benchmark of analysis methods (focus on railway accidents)
- Preselection of 11 out of 47 methods
- Detailed evaluation shows best fit for 4 methods
- Best fitting to requirements: Why-Because Analysis (WBA)
Why-Because Analysis focuses on cause and effect relations providing logical test questions to ensure completeness

Approach
- Accidents are caused by a combination of factors or conditions (similar to Swiss cheese model).
- Causal connections between the factors are analysed and visualized.

Analysis
- Up to required analysis-depth (-> root causes).
- Formal test (test questions) make sure of correctness of analysis.
- Result: Why-Because graph („cause and effect graph“).

Example

Test 1: Effect caused by these factors?
Yes -> **causal sufficiency**

- Why?
- Because:
 - Impuls of egg
 - Eggshell brakes
 - Egg liquid inside

Test 2: Can single factor be emitted with same effect?
No -> **necessary causal factor (NCF)**

- Mass of egg
- Velocity of egg
- Egg crashes on floor
- Certain floor material

Causal sufficiency & NCFs -> **causal completeness**

Person lets egg fall from 1m

Certain stability of egg shell
Why-Because Analysis analysis example: Derailment of InterCity train exiting Stuttgart main station

process of InterCity-derailment
- InterCity leaves platform in push-operation
- speeds up to ca. 38 km/h
- passes three points of various radius (S-curve 300m-190m-190m)
- traction vehicle and three last coaches derail within S-curve
- 5 people slightly injured & major damage

additional facts
- buffer damage
- Two more derailments with very similar circumstances (IC push-operation in S-curve Stuttgart main station)
All parameters were within regulations – no simple single cause explanation possible

<table>
<thead>
<tr>
<th>topic</th>
<th>parameter (excerpt)</th>
<th>within regulations?</th>
</tr>
</thead>
<tbody>
<tr>
<td>infrastructure</td>
<td>condition of points and tracks</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>track geometry (radius combination in S-curve)</td>
<td>✓</td>
</tr>
<tr>
<td>vehicle</td>
<td>buffer geometry, material, maintenance etc.</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>vehicle condition (maintenance history, etc.)</td>
<td>✓</td>
</tr>
<tr>
<td>operation</td>
<td>force in push-operation</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Velocity</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>local operation regulations</td>
<td>✓</td>
</tr>
</tbody>
</table>

Arising question: „what was different from usual operation that could have caused the derailment?“
Analysis of journey data shows anomalies in acceleration of derailed trains

Comparison of InterCity journey data in push-operation (same track in Stuttgart main station)

Observations

- IC push-operations with no derailment accelerate before entering S-curve
- IC push-operation with derailments show similar acceleration behavior in S-curve

Effects in S-curve

→ increased force on buffers in acceleration phase (see graphic)
→ shorter buffer overlapping
→ coach bodies function as oscillation arm
→ Dynamical behavior of coaches due to velocity and acceleration
Why-Because graph identifies all distributing causal factors

Legend:
- Cause ➔ Effect

- Derailment of three coaches and traction vehicle

- Coach buffer levers coach out of track

- Coach buffer bends down

- High force on buffer
 - Force from traction vehicle
 - Acceleration in unusual sector

- Short overlapping of buffers
 - Coach position close to traction vehicle
 - Push-operation

- Buffer stability
 - Buffer geometry
 - Deflection of coach body
 - Geometry of track
 - Length of coach body and neighbor coach

- Buffer material and design

Simplified version of Why-Because Graph
The combination of 7 factors caused the derailment; for improvement these factors are possible fields of action.
Why-Because Analysis has great potential in railway accident analysis

experience from example
- eliminated discussions about „who is to blame“
- efficient for internal communication
- helped to focus on relevant fields of action
- doesn’t replace experience and expertise

evaluation and conclusions (approx. 15 real life cases)

requirements as stated above
- **standard** analyzing procedure
- **completeness** - identification of all the root causes
- **objectivity** - unaffected to questions of „who is to blame“ or political interests

WBA requirement-evaluation
- provides standardized method
- ensured by causal completeness tests
- objective result: Why-Because graph

conclusions
- further usage in upcoming cases
- potential to become standard part in accident analysis
Selection of railway accidents where a Why-Because Analysis was applied (mostly by scientific institutions)

- **Brühl (DE)**
 - Derailment - 2000
 - 9 dead
 - 149 injured
 - 50 Mio. DM damage

- **Eschede (DE)**
 - Derailment - 1998
 - 101 dead
 - 88 injured
 - 300 Mio. DM damage

- **Ladbroke Grove (UK)**
 - Slanting collision - 1999
 - 31 dead
 - 523 injured
 - High damage

- **Asta (NOR)**
 - Frontal collision - 2000
 - 19 dead
 - High damage

Thank you very much for your attention!