

A SAFETY ALLOCATION METHODOLOGY FOR A NEW TRAIN DEVELOPMENT

Philippe COZZARIN, Rolling Stock Safety Expert

Safety Requirements - Overview

Safety requirements is a global concept for describing all type of measures to be put in place for reducing the severity and/or frequency of risks until getting an acceptable level.

Subsystems contributing somehow to reach an acceptable safety level are managed by Safety Requirements:

- Functional Safety Requirements define a function (sensor, treatment and actuator) that contributes to reduce the risk in a given context.
- Technical Safety Requirements define design constraints (e.g. the locking system on sliding doors shall withstand a force in the opening direction of 1 200 N)
- Contextual/Operational Safety Requirements define a relationship between the system and its environment (e.g. mission profile, staff qualification)

Safety Requirements - Risk Assessment Process

Event Tree Analysis – Link with previous step

The functional safety allocation is anchored to the risk analysis and evaluation

RAILWAY SAFETY COUNCIL

Event Tree Analysis

To model a scenario from an initial event to the accident using an Event Tree Analysis (ETA). Quantification of the ETA allows to allocate the functional safety requirement (like the SIL):

RRFo : Risk Reduction Factor reducing Occurrence **RRFs** : Risk Reduction Factor reducing Severity **Occ1/2** : Frequency of occurrence of the accident

Event Tree Analysis

The efficiency of the barrier in reducing the hazard rate is expressed by the formula:

$$THR = HR \times \prod_{1}^{n} \frac{1}{RRFo_{n}}$$

With RRFo_n the Risk Reduction Factor of the n **INDEPENDENT BARRIERS** implemented to reduce the occurrence of the hazard/accident coming from a functional technical and / or operational cause.

One can deduce the 2 equations to be resolved :

RRFo : Risk Reduction Factor reducing Occurrence RRFs : Risk Reduction Factor reducing Severity Oc1/2 : Frequency of occurrence of the accident

$$HR \times \frac{1}{RRFo} \times \frac{1}{RRFs} \le OCC1$$
$$HR \times \frac{1}{RRFo} \times \left(1 - \frac{1}{RRFs}\right) \le OCC2$$

From these equations, HR, RRFo and RRFs are defined to reach Occ1 and Occ2 targets.

Remark:

rk: The HR frequency shall be controlled. If it is not the case (e.g. due to an external cause not controlled), the hazard shall be assumed permanent and the failure of the barrier has to be considered as the actual hazard to be prevented.

RRF versus SIL correspondence

Hazard Rate (HR) [event / hour]	Risk Reduction Factor effectiveness (RRF)	Safety Integrity Level (SIL)
$10^{-9} \le HR < 10^{-8}$	$10\ 000 < RRF \le 100\ 000$	4
$10\text{-}8 \leq \text{HR} < 10\text{-}7$	$1\ 000 < RRF \le 10\ 000$	3
$10\text{-}7 \leq \text{HR} < 10\text{-}6$	$100 < RRF \le 1\ 000$	2
$10\text{-}6 \leq \text{HR} < 10\text{-}5$	$10 < \text{RRF} \le 100$	1
10-5 ≤ HR	$RRF \le 10$	Basic Integrity

HR or RRF versus SIL Correspondences

Event Tree Analysis – SIL allocation

5e-6

SIL1

5E-7

SIL2

500 ↓

SIL2

A SAFETY ALLOCATION METHODOLOGY FOR A NEW TRAIN DEVELOPMENT | Philippe COZZARIN RS Safety Expert

5 0 0 0

SIL3

SIL allocation W/O RRF

Assuming two independent sub-functions, at allocation Phase (Hazardous Event ≤ HRtarget):

This hazardous event can occurred when Function A and B fail (assuming $HR_X \propto SDT_X \ll 0,1$):

Function B Allocation : HR_B / SIL

Function A Allocation : HR_A / SIL Function B Allocation : RRF_B / SIL

SIL allocation with and w/o RRF

Numerical Application with a target < 1E-8/h:

Approach w/o RRF

	Random failure		Systematic Failure
Function	$TFFR_A$	1E-5/h	Basic
А	Test _A	150h	Integrity
Function	$TFFR_{B}$	1E-5/h	Basic
В	Test _B	150h	Integrity
Function	$TFFR_A$	1,4E-6/h	SIL1
А	Test _A	10000h	
Function	$TFFR_{B}$	1,4E-6/h	SIL1
В	Test _B	10000h	
Function	TFFR _A	3E-7/h	SIL2
А	Test _A	50000h	
Function	TFFR _B	3E-7/h	SIL2
В	Test _B	50000h	

Approach with $\ensuremath{\mathsf{RRF}}$

Systematic Failure	Ra fa	ndom ilure	
Basic Integrity	TFFR _A	1E-5/h	Function A
SIL3	RRF	>1000	Function B
SIL1	TFFR _A	1,4E-6/h	Function A
SIL2	RRF	>140	Function B
SIL2	TFFR _A	3E-7/h	Function A
SIL1	RRF	>30	Function B

Accident: Fall of passengers on track

Hazardous situation: Door open

Phase: in operation

Triggering event: Passengers close to the door

Cause: Door enabled wrongly

Consequence:

death of several passengers, Target ≤1E-9/h Single death, Target ≤ 1E-7/h

Risk model at train level:

Apportionment of the function "to prevent door enabled without driver action"

Apportionment of the function "to prevent door opening when train is at speed"

INTERNATIONAL RAILWAY SAFETY COUNCIL

Conclusion

The Event Tree and the use of the notion of RRF, allows to:

- Segregate the cause (initial event) from a barrier,
- Model the scenario in a sequential way which is easier to share and challenge by other stakeholders,
- Allocate SIL without specifying the proof test interval,
- Avoid misuse such as allocating a SILO based on too short test interval,
- Update event frequency and scenario based on return of experience.

