

Anticipate danger precursors through the development of a predictive function

Vianney BORDEAU, Rail Safety Expert

Contents

- 1. Risk control policy at RATP
- 2. "Precursor" approach
- 3. Implementation of predictive model
- 4. Predictive indicators
- 5. Creation of the predictive model
- 6. Example application
- 7. Salient points...
- 8. Study approaches...

Risk control policy at RATP

Basic principle at RATP

- "Pay attention to all precursor signs to reduce their frequency of occurrence, which is the only way of reducing the probability of the occurrence of feared events".
- Development of a risk control policy based on the Danger precursors concept :
 - Application of the "Precursors" Approach over the past 10 years;
 - More than 200 Danger precursors are monitored on RATP's different networks.

« Precursors » Approach

Identification principle

« Precursors » Approach

Principle of the approach

- Objective: to provide a steering tool giving an alert on precursor drifts in order to
 React and to be GAME at all times.
 - Danger alert Trend Charts: permanent devices for testing and evaluation of the safety level
 of installations.
- Implementation : analysis based on the study of several indicators representative of changes in precursors.
- Results: Recommendations to operators and maintenance workers (eg: No action, Examine or React).

Implementation of a predictive model

For what purpose?

A <u>linear trend curve</u> suggests that the precursor is likely to change downwards in the next few months...

A <u>second order polynomial trend</u>
<u>curve</u> suggests that the precursor is likely to change upwards in the next few months...

Implementation of a predictive model

General principles

Objective: Process based on the analysis of the history of a system, the purpose of which is to evaluate the probability that this system will change in one direction or the other.

Implementation:

Results : Anticipation of recommendations.

Implementation of a predictive model

Assumptions and input data

- Model based on a Statistical analysis of the change of precursors based on Incidental operating experience.
- Purely statistical approach :
 - That anticipates how a system will change, without considering physical or technical phenomena;
 - That is based on Predictive indicators for which the change can be correlated to the safety level of the studied system;
 - That associates predictions with a Confidence Index (the index is higher when the law becomes more "true").

Predictive indicators

Selected principles

- Each indicator is a Mathematical Indicator managed through Macros using the Microsoft Excel® software.
- The adopted model is based on 3 predictive indicators :
 - Predictive indicator related to monthly changes: it expresses the change in precursors in one month compared with the same calendar months during the previous 5 years.
 - Predictive indicator for changes in the short term: it expresses the trend of precursors during a period of 6 months.
 - Predictive indicator for changes in the long term: it expresses the trend of precursors, the value of which is related to its mean value, during a period of 5 years.

Creation of the predictive model

Precursor analysis principles

 The analysis of indicators characterises the state of system degradation according to 2 or 3 criteria GREEN / ORANGE / RED or GREEN / RED

The combination of:

- 3 monthly criteria,
- 2 short term criteria,
- 2 long term criteria.

12 triplets model that summarises the various possible changes of precursors in 12 states.

Each state characterises the safety degree of the studied precursor.

	Indicateur prédictif mensuel	Indicateur prédictif à court terme	Indicateur prédictif à long terme
Triplet 1	VERT mensuel	VERT court terme	VERT long terme
Triplet 2	ORANGE mensuel	VERT court terme	VERT long terme
Triplet 3	ROUGE mensuel	VERT court terme	VERT long terme
Triplet 4	VERT mensuel	ROUGE court terme	VERT long terme
Triplet 5	ORANGE mensuel	ROUGE court terme	VERT long terme
Triplet 6	ROUGE mensuel	ROUGE court terme	VERT long terme
Triplet 7	VERT mensuel	VERT court terme	ROUGE long terme
Triplet 8	ORANGE mensuel	VERT court terme	ROUGE long terme
Triplet 9	ROUGE mensuel	VERT court terme	ROUGE long terme
Triplet 10	VERT mensuel	ROUGE court terme	ROUGE long terme
Triplet 11	ORANGE mensuel	ROUGE court terme	ROUGE long terme
Triplet 12	ROUGE mensuel	ROUGE court terme	ROUGE long terme

Creation of the predictive model

Statistical interpretation of results

- Creation of a Statistical prediction table specific to each precursor.
- Implementation:
 - Identify the triplets in the history of the studied precursor
 - Statistically identify changes (Up or Down) from month to month in the changes history as a function of identified triplets.
- Results:
 - Complete the "Precursors Approach" analysis
 - Degree of confidence in the model: check predictions on all data in the history.

Creation of the predictive model

Principe of the Statistical prediction table

	Statistical change in month M+1			l		
	Observed number of	Observed number of	Probability	<u> </u>		Triplets that have
	increases	reductions	Hausse	Baisse		never occurred
Triplet 1	0	0				never occurred
Triplet 2	0	0	•	-		
Triplet 3	0	0	-	. /	1	
Triplet 4	14	25	35.9%	64 1%		
Triplet 5	30	20	60.0%	40.0%] [Triplet followed by an
Triplet 6	23	4 _	85.2%	14.8%] ——	Increase in 85.2% of
Triplet 7	0	0	<i>J</i> .	-		cases and by a Reduction in 14.8% of
Triplet 8	0	0		-]	cases
Triplet 9	0	0	-	-		
Triplet 10	4	6	40.0%	60.0%] ,	
Triplet 11	10	4	71.4%	28.6%		Triplet always followed by an
Triplet 12	3	0	100.0%	0.0%]←——	Increase

Example application

Salient points

- State of ongoing work
 - A reference method has been defined.
 - An Excel Macro under VBA has been produced and applied to data for RATP's various networks.
 - The results were conclusive on some precursors.

- Model limit
 - Evaluation made with a purely statistical justification :
 - Statistical results not 100% true
 - A confidence index for the model has to be identified to evaluate the statistical uncertainty

Study approaches...

- Define new types of indicators (eg new mathematical models, number of indicators to be used, number of criteria considered, etc.)
- Make use of a validation process based on existing and future operating experience.
- Use other data sources available at RATP
 Use other predictive methods.
- Obtain predictions over longer periods.

Thank you for your attention

